To handle energetic
materials safely, it is important to have knowledge
about their sensitivity. Density functional theory (DFT) has proven
a valuable tool in the study of energetic materials, and in the current
work, DFT is employed to study the thermal unimolecular decomposition
of 2,4,6-trinitrophenol (picric acid, PA), 3-methyl-2,4,6-trinitrophenol
(methyl picric acid, mPA), and 3,5-dimethyl-2,4,6-trinitrophenol (dimethyl
picric acid, dmPA). These compounds have similar molecular structures,
but according to the literature, mPA is far less sensitive to impact
than the other two compounds. Three pathways believed important for
the initiation reactions are investigated at 0 and 298.15 K. We compare
the computed energetics of the reaction pathways with the objective
of rationalizing the unexpected sensitivity behavior. Our results
reveal a few if any significant differences in the energetics of the
three molecules, and thus do not reflect the sensitivity deviations
observed in experiments. These findings point toward the potential
importance of crystal structure, crystal morphology, bimolecular reactions,
or combinations thereof on the impact sensitivity of nitroaromatics.