The striking kinetic stability of many proteins derived from hyperthermophilic organisms has led to the proposal that such stability may result from a heightened activation barrier for unfolding independent of a corresponding increase in the thermodynamic stability. This in turn implies a corresponding retardation of the folding reaction. A commonly cited model for kinetic thermal stabilization is the rubredoxin from Pyrococcus furiosus (Pf), which exhibits an irreversible denaturation lifetime at 100 degrees C of nearly a week. Utilizing protein resonances shifted well outside of the random coil chemical shift envelope, nuclear magnetic resonance (NMR) chemical exchange measurements on Pf rubredoxin as well as on the mesophile Clostridium pasteurianum (Cp) rubredoxin demonstrate reversible thermal transition temperatures of 144 degrees C (137 degrees C for the N-terminal modified A2K variant) and 104 degrees C, respectively, with similar (un)folding rates of approximately 25,000 s(-1), only modestly slower than the diffusion controlled rate. The absence of a substantial activation barrier to rubredoxin folding as well as the similar folding kinetics of the mesophile protein indicate that kinetic stabilization has not been utilized by the hyperthermophile rubredoxin in achieving its extreme thermal stability. The two-state folding kinetics observed for Pf rubredoxin contradict a previous assertion of multiphasic folding based on hydrogen exchange data extrapolated to an estimated midpoint of transition temperature (T(m)) of nearly 200 degrees C. This discrepancy is resolved by the observation that the base-catalyzed hydrogen exchange of the model dipeptide (N-acetyl-L-cysteine-N-methylamide)4-Cd2+ is 23-fold slower than that of the free cysteine model dipeptide used to normalize the Pf rubredoxin hydrogen exchange data.