2020
DOI: 10.1186/s12859-020-3354-8
|View full text |Cite
|
Sign up to set email alerts
|

Conversion from electrocardiosignals to equivalent electrical sources on heart surface

Abstract: Background The actual task of electrocardiographic examinations is to increase the reliability of diagnosing the condition of the heart. Within the framework of this task, an important direction is the solution of the inverse problem of electrocardiography, based on the processing of electrocardiographic signals of multichannel cardio leads at known electrode coordinates in these leads (Titomir et al. Noninvasiv electrocardiotopography, 2003), (Macfarlane et al. Comprehensive Electrocardiology,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2021
2021

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 9 publications
0
1
0
Order By: Relevance
“…The paper by G.V. Zhikhareva et al [13] presents a novel methodology to increase the informative value of electrocardiographic (ECG) surveys using data from multichannel electrocardiographic leads placed on the surface of the human torso. This contribution deals with a procedure for computing Body Surface Potential Mapping (BSPM) of the torso and compares it to the method of Reconstruction of Equivalent Electrical Sources on Heart Surface (HSSM).…”
Section: Contributions Of This Special Issuementioning
confidence: 99%
“…The paper by G.V. Zhikhareva et al [13] presents a novel methodology to increase the informative value of electrocardiographic (ECG) surveys using data from multichannel electrocardiographic leads placed on the surface of the human torso. This contribution deals with a procedure for computing Body Surface Potential Mapping (BSPM) of the torso and compares it to the method of Reconstruction of Equivalent Electrical Sources on Heart Surface (HSSM).…”
Section: Contributions Of This Special Issuementioning
confidence: 99%