2023
DOI: 10.4208/cicp.oa-2022-0218
|View full text |Cite
|
Sign up to set email alerts
|

Convergence of Physics-Informed Neural Networks Applied to Linear Second-Order Elliptic Interface Problems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 0 publications
0
0
0
Order By: Relevance
“…In order to assess the effectiveness of the proposed method, we have examined several benchmark partial differential equations, which include the Allen-Cahn equation, the Burgers equation, a convection dominated diffusion equation, the Helmholtz equation, and some multiple-dimensional elliptic equations. We compare our method with the vanilla PINNs [31] and the Residual-based Adaptive Refinement (RAR) method [47], which conducts denser sampling in regions with large residual losses. Specifically, the settings of RAR in this paper follow the settings in the official DeepXDE tutorial [26].…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…In order to assess the effectiveness of the proposed method, we have examined several benchmark partial differential equations, which include the Allen-Cahn equation, the Burgers equation, a convection dominated diffusion equation, the Helmholtz equation, and some multiple-dimensional elliptic equations. We compare our method with the vanilla PINNs [31] and the Residual-based Adaptive Refinement (RAR) method [47], which conducts denser sampling in regions with large residual losses. Specifically, the settings of RAR in this paper follow the settings in the official DeepXDE tutorial [26].…”
Section: Methodsmentioning
confidence: 99%
“…One particularly noteworthy development is the emergence of the Physical-Informed Neural Network (PINN) paradigm [3,6,8,27,31,39,46,47,52]. The core concept underpinning PINNs revolves around the integration of partial differential equations and their associated conditions as soft constraints within the loss function of a neural network [21,22,25,38].…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, there has been a surge of interest in applying neural networks in traditional scientific modeling (e.g. partial differential equations), which yields the so-called physics-informed neural networks [5,10,11,14,17,18,21,23,30,34,35]. The main idea of PINNs is to include physical domain knowledge as soft constraints in the empirical loss function and then use existing machine learning methodologies such as stochastic optimization, to train the model.…”
Section: Introductionmentioning
confidence: 99%
“…Крім того, бібліотека має зручний інтерфейс, що спрощує визначення моделей, навчання та отримання результатів, що робить її доступною для використання дослідниками і інженерами з різним рівнем досвіду у глибокому навчанні. Використання бібліотеки DeepXDE на даний час досить поширене в наукових публікаціях [3,4]. Однак, певним недоліком бібліотеки є те, що ефективне її використання потребує знання мов програмування та дотримання певного внутрішнього формату запису задачі, приклад використання бібліотеки можна побачити в офіційній документації [5].…”
unclassified