2019
DOI: 10.12943/cnr.2017.00018
|View full text |Cite
|
Sign up to set email alerts
|

Convective Mass Transfer Through an Unreactive Porous Deposit Layer Under High Temperature Conditions

Abstract: Fe–Cr–Ni alloys have experienced localized degradation, such as stress-corrosion cracking (SCC), when used for steam generator tubes in nuclear power plants. The tube surface can be covered by a porous deposit layer resulting primarily from fouling. This porous layer acts as a barrier to the mass transfer for the chemical species in the main fluid to the tube surface. Thus, it influences the interfacial chemistry at the metal surface and the susceptibility of Fe–Cr–Ni alloys to SCC. While the chemistry of the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2019
2019
2020
2020

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 9 publications
(16 reference statements)
0
2
0
Order By: Relevance
“…Porous media are materials containing pores (or voids) that can take various shapes, forms (regular or irregular), and stiffness (e.g., sponge, wool, fibers, and rough surfaces) and have been heavily researched in traditional mechanical and industrial engineering [10][11][12]. Modeling fluid transport exactly in every fiber or every pore of a porous material (e.g., water soaking into a sponge) is highly complex and almost impossible; thus, the common approach is to model it based on key material properties [13][14][15]. Two of the most important properties are porosity, the fraction of the void (i.e., "empty") spaces in a material, between 0 and 1, or between 0% and 100%; and permeability, the ability of a porous material to allow fluids to pass through it.…”
Section: Modeling Human Tongue Surface As a Porous Mediummentioning
confidence: 99%
“…Porous media are materials containing pores (or voids) that can take various shapes, forms (regular or irregular), and stiffness (e.g., sponge, wool, fibers, and rough surfaces) and have been heavily researched in traditional mechanical and industrial engineering [10][11][12]. Modeling fluid transport exactly in every fiber or every pore of a porous material (e.g., water soaking into a sponge) is highly complex and almost impossible; thus, the common approach is to model it based on key material properties [13][14][15]. Two of the most important properties are porosity, the fraction of the void (i.e., "empty") spaces in a material, between 0 and 1, or between 0% and 100%; and permeability, the ability of a porous material to allow fluids to pass through it.…”
Section: Modeling Human Tongue Surface As a Porous Mediummentioning
confidence: 99%
“…Porous media are materials containing pores (or voids) that can take various shapes, forms (regular or irregular), and stiffness (e.g., sponge, wool, fibers, and rough surfaces) and have been heavily researched in traditional mechanical and industrial engineering [9][10][11] . Modeling fluid transport exactly in every fiber or every pore of a porous material (e.g., water soaking into a sponge) is highly complex and almost impossible; thus, the common approach is to model it based on key material properties [12][13][14] . Two of the most important properties are porosity, the fraction of the void (i.e., "empty") spaces in a material, between 0 and 1, or between 0% and 100%; and permeability, the ability of a porous material to allow fluids to pass through it.…”
Section: Modeling Human Tongue Surface As a Porous Mediummentioning
confidence: 99%