We study perturbation theory for large-scale structure in the most general scalar-tensor theories propagating a single scalar degree of freedom, which include Horndeski theories and beyond. We model the parameter space using the effective field theory of dark energy. For Horndeski theories, the gravitational field and fluid equations are invariant under a combination of time-dependent transformations of the coordinates and fields. This symmetry fixes the perturbation-theory kernels in the squeezed limit and ensures that the well-known consistency relations for large-scale structure, originally derived in general relativity, hold in modified gravity as well. For theories beyond Horndeski, instead, the gravitational field and fluid equations are invariant under separate transformations. In the absence of a common symmetry, the perturbation-theory kernels are modified in the squeezed limit and the consistency relations for large-scale structure do not hold. We show, however, that the modification of the squeezed limit depends only on the linear theory. We investigate the observational consequences of this violation by computing the matter bispectrum. In the squeezed limit, the largest effect is expected when considering the cross-correlation between different tracers. Moreover, the individual contributions to the 1-loop matter power spectrum do not cancel in the infrared limit of the momentum integral, modifying the power spectrum on non-linear scales.