AP neurons in the embryonic leech CNS extend lateral projections to peripheral targets through the ganglionic nerve roots and longitudinal projections toward neighboring ganglia through the connective nerves. The lateral projections grow extensively in the periphery; in contrast, the longitudinal projections achieve relatively little growth and eventually retract, the majority having essentially disappeared by the end of embryogenesis. Cutting both nerve roots, which eliminates both lateral projections, however, induces the longitudinal projections of the AP neuron to begin to grow rapidly toward adjacent ganglia within 14 hr after the axotomy. By using a laser microbeam to cut just the lateral projections of the AP cells, we further show that it is indeed the loss of its lateral projections, and not a secondary response to the cutting of other components of the root nerves, that induces the longitudinal projections of the AP cell to grow extensively. In addition, we report that reducing the outgrowth of the lateral projections by: (1) cutting only one lateral projection, or (2) ablating pioneer neurons required by the AP neuron to establish its peripheral arbor, also results in a significant increase in the growth of the longitudinal projections. Finally, we demonstrate that increasing the outgrowth of the longitudinal projections by ablating the AP cells in adjacent ganglia results in a significant reduction in the outgrowth of the lateral projections. Taken together, these results indicate, first, that the longitudinal and lateral projections usually grow at the expense of each other, and second, that normally the extensive outgrowth of its lateral projections is a necessary condition for a developing AP neuron to retract its longitudinal projections.