1978
DOI: 10.1063/1.325139
|View full text |Cite
|
Sign up to set email alerts
|

Conduction mechanism of non-Ohmic zinc oxide ceramics

Abstract: The conduction mechanism of non-Ohmic ZnO ceramics is investigated. In order to explain the non-Ohmic property, a new energy-band model composed of a thin intergranular layer with traps sandwiched between Schottky barriers formed opposite each other is proposed. According to the newly proposed energy-band model, the non-Ohmic property of ZnO ceramics is mainly governed by field emission for the reverse-biased Schottky barrier in the voltage region above the threshold voltage in the V-I curve and by thermionic … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
90
0
5

Year Published

2001
2001
2019
2019

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 293 publications
(97 citation statements)
references
References 14 publications
2
90
0
5
Order By: Relevance
“…Summarized Degradation Mechanism Eda et al [16][17][18] ion migration process Takahashi et al 19 chemical desorption of oxygen ions at the grain boundaries Chiang et al 20 asymmetrical distribution of impurity ions in grain boundary region Sato et al 21,22 electrons captured by traps inside depletion layer and thus accumulated near grain boundary Gupta et al 15 migration process of zinc interstitial (the seminal grain-boundary defect model) Sonder et al 23 high mobility of oxygen ion at high temperature, and flaws like micro-cracks in varistor act as conduits for oxygen Bui et al 24 partial discharges causing the formation of HNO 3 that degrades the Schottky barrier Ramírez et al 25 the lost of oxygen species and β-Bi 2 O 3 phase during degradation process leading to abnormal degradation phenomena and determining its degradation rate, 26 whereas knowledge from atomic scale is quite limited on the role of element that is individually doped and, worse, on the co-doping effect.…”
Section: Researchersmentioning
confidence: 99%
“…Summarized Degradation Mechanism Eda et al [16][17][18] ion migration process Takahashi et al 19 chemical desorption of oxygen ions at the grain boundaries Chiang et al 20 asymmetrical distribution of impurity ions in grain boundary region Sato et al 21,22 electrons captured by traps inside depletion layer and thus accumulated near grain boundary Gupta et al 15 migration process of zinc interstitial (the seminal grain-boundary defect model) Sonder et al 23 high mobility of oxygen ion at high temperature, and flaws like micro-cracks in varistor act as conduits for oxygen Bui et al 24 partial discharges causing the formation of HNO 3 that degrades the Schottky barrier Ramírez et al 25 the lost of oxygen species and β-Bi 2 O 3 phase during degradation process leading to abnormal degradation phenomena and determining its degradation rate, 26 whereas knowledge from atomic scale is quite limited on the role of element that is individually doped and, worse, on the co-doping effect.…”
Section: Researchersmentioning
confidence: 99%
“…Donde sí se observan diferencias es en los valores del Voltaje de corte, que siempre resultan superiores para el material SE frente a los del material CE para una misma temperatura de sinterización. Considerando que la respuesta del material se puede asimilar a la conexión en serie de los microvaristores formados por los bordes de grano activos (16), se puede relacionar el aumento del voltaje de corte con la disminución del tamaño de grano por medio de la siguiente ecuación empírica (1,17):…”
Section: Resultados Y Discusionunclassified
“…Es decir, V B ≈ 1.16 V A . Considerando que la respuesta del material se puede asimilar a la conexión en serie de los microvaristores formados por los bordes de grano activos (16), se puede relacionar el aumento del voltaje de corte con la disminución del tamaño de grano (1,17):…”
Section: Resultados Y Discusionunclassified