DOI: 10.22215/etd/2021-14768
|View full text |Cite
|
Sign up to set email alerts
|

Computationally Efficient and Secure Kronecker-based Compressive Sensing

Abstract: We propose an efficient permuted Kronecker-based sparse measurement matrix for compressive sensing applications. We use sub-matrices to create a block-diagonal matrix and multiply it with a deterministic permutation matrix to measure the sparse or compressible signals. Using ECG signals from the MIT-BIH Arrhythmia database, we show that the reconstructed signal quality is comparable to the ones achieved using standard compressive sensing methods. Our methodology results in an overall reduction in storage and c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 58 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?