2015
DOI: 10.1142/s0219519415500360
|View full text |Cite
|
Sign up to set email alerts
|

Computational Analysis of the Regenerated Knee Structure After Bone Marrow Stimulation Techniques

Abstract: used to investigate stresses produced in complex structures (e.g., cartilage, subchondral bone and trabecular bone) using 2D knee structural models. Abrasion arthroplasty creates global damages only in subchondral bone, but, microfracture technique creates local damages in both trabecular and subchondral regions. Although stresses do not significantly change in trabecular bones as 50% recovery occurs in both abrasion and microfacture samples, significant changes are observed in both subchondral bone and cartil… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2020
2020
2020
2020

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 41 publications
0
2
0
Order By: Relevance
“…Chen et al argues that making holes in the subchondral bone would lead to changes in the subchondral bone structure, which would alter the biomechanics of the knee and ultimately influence cartilage repair, but this argument is not supported by mechanical evidence [20]. Recently, Shayan et al conducted a finite element analysis to examine the changes of biomechanical properties after abrasion arthroplasty and microfracture, but they failed to analyse the biomechanical properties of subchondral bone after the microfracture technique [9]. In addition, it was difficult to accurately measure the material properties of the repaired cartilage, subchondral bone and trabecular bone, and they only examined changes in 2D cross sectional images and not in 3D overall structures.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Chen et al argues that making holes in the subchondral bone would lead to changes in the subchondral bone structure, which would alter the biomechanics of the knee and ultimately influence cartilage repair, but this argument is not supported by mechanical evidence [20]. Recently, Shayan et al conducted a finite element analysis to examine the changes of biomechanical properties after abrasion arthroplasty and microfracture, but they failed to analyse the biomechanical properties of subchondral bone after the microfracture technique [9]. In addition, it was difficult to accurately measure the material properties of the repaired cartilage, subchondral bone and trabecular bone, and they only examined changes in 2D cross sectional images and not in 3D overall structures.…”
Section: Discussionmentioning
confidence: 99%
“…To establish a model that accurately reflects the actual state for the finite element analysis, the CT images were 3D modelled using the Mimics software (Materialise's interactive medical image control system; Leuven, Belgium). To compare microfracture, the images of the cartilage, subchondral bone and trabecular bone layers must be distinguishable [9]. However, we removed the cartilage layer because the purpose of this study was to examine the maximum compression stress that is placed on areas near the hole after microfracture surgery.…”
Section: D Image Generation and Structural Analysis Of Osteochondralmentioning
confidence: 99%