Summary
The paper deals with the use of model order reduction within a posteriori error estimation procedures in the context of the finite element method. More specifically, it focuses on the constitutive relation error concept, which has been widely used over the last 40 years for FEM verification of computational mechanics models. A technical key‐point when using constitutive relation error is the construction of admissible fields, and we propose here to use the proper generalized decomposition to facilitate this task. In addition to making the implementation into commercial FE software easier, it is shown that the use of proper generalized decomposition enables to optimize the verification procedure and to get both accurate and reasonably expensive upper bounds on the discretization error. Numerical illustrations are presented to assess the performance of the proposed approach.