SummaryMolecular biology is increasingly relevant to the diagnosis and control of infectious diseases. Information on DNA sequences has been extensively exploited for the development of polymerase chain reaction-based assays for the diagnosis of leishmaniasis and the identification of parasite species. It has also led to the use of cloned antigen for serodiagnosis. It is expected that the sequencing of the Leishmania major genome and the genomes of other Leishmania species will enable important progress in further improving diagnosis and control. The ability to use genome data to clone and sequence genes, which, when expressed, provide antigens for vaccine development, will increase the possibilities for rational vaccine development. Moreover, DNA on its own will provide the basis for the development of DNA vaccines that may overcome some of the problems encountered with protein-based vaccines. One of the greatest threats to parasite control is the development of drug resistance in parasites. Knowing the molecular basis of drug resistance and the ability to monitor its development with sensitive and specific DNA-based assays for 'resistance alleles' may aid maintaining the effectiveness of available antiLeishmania drugs. Finally, techniques such as microarrays and nucleic acid sequence-based amplification will eventually allow rapid screening for specific parasite genotypes and assist in diagnostic and epidemiological studies.