We have used the 9L rat brain tumor model to search for effective chemotherapeutic approaches to the management of brain tumors. Several antineoplastic agents which have been proposed or are currently being used for human brain tumors, including 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU), bleomycin, aziridinylbenzoquinone (AZQ), cis-Platinum, and acivicin, were administered intravenously (iv), intraperitoneally (ip), or intracerebrally (ic) to rats burdened with the intracranial 9L gliosarcoma. The results confirm that BCNU is the most effective systemic agent among the chemotherapeutic agents tested as indicated by its ability to significantly increase the median survival time (MST) and life span of the tumor-burdened animals. Bleomycin is an effective agent against the intracranial 9L tumor when administered ic. While neither systemic single iv dose AZQ (0.5-2.5 mg/kg) nor multiple ip treatments (0.5-1.0 mg/kg x 5, q 6 h) were effective in prolonging the survival, single ic dose AZQ (5-50 micrograms/rat) treatment significantly increased the MST of the treated animals (P< 0.05). Systemic AZQ treatments using higher doses produced a hematological toxicity, resulting in a decrease in MST of the treated animals. Cis-Platinum, either administered ip or ic, produced only a marginal effect on survival, although acute neurologic toxicity limited the dose of cis-Platinum that could be administered ic. Acivicin, either administered ip or ic, produced no effect on the survival of treated animals. Our results suggest that local treatment with certain antineoplastic agents may be an efficient therapy in the management of brain tumors.