2018
DOI: 10.1149/2.0921813jes
|View full text |Cite
|
Sign up to set email alerts
|

Comparing Cycling Characteristics of Symmetric Lithium-Polymer-Lithium Cells with Theoretical Predictions

Abstract: We develop a model based on concentrated solution theory for predicting the cycling characteristics of a lithium-polymer-lithium symmetric cell containing an electrolyte with known transport properties. The electrolytes used in this study are mixtures of polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, prepared over a wide range of salt concentrations. The transport properties of PEO/LiTFSI previously reported in the literature are used as inputs for our model. We calcula… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
95
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
1

Relationship

2
5

Authors

Journals

citations
Cited by 55 publications
(96 citation statements)
references
References 27 publications
0
95
0
1
Order By: Relevance
“…Complete electrochemical characterization of ion transport enables prediction of timedependent salt concentration and potential gradients across a battery electrolyte during dc polarization 31,32 . A desirable electrolyte will have small salt concentration and potential gradients within the electrolyte at large current densities.…”
Section: Introductionmentioning
confidence: 99%
“…Complete electrochemical characterization of ion transport enables prediction of timedependent salt concentration and potential gradients across a battery electrolyte during dc polarization 31,32 . A desirable electrolyte will have small salt concentration and potential gradients within the electrolyte at large current densities.…”
Section: Introductionmentioning
confidence: 99%
“…As an ext step,t he cell voltage (E)r esponse of Li metal electrodes during electrodeposition was correlated with the wettability properties of the PEs.W ed escribe this response based on wettability-dependent electrochemical interfaces in PE-based LMBs.F ollowing Figure 4a,t he response of E to am oderate constant current density ( % 0.1 mA cm À2 for the observed systems) consists of ap otential drop deducing Ohmslaw (h Ohm )( Figure S11) and an arc-shaped overpotential response (h arc )b efore reaching as teady-state potential (E steady-state ). [53,54] When aconstant current density j is applied, h Ohm evolves immediately at av ery short time scale (! seconds), while h arc arises within seconds and minutes, and E steady-state is typically reached within minutes or some-times hours (strongly depending on the observed system).…”
Section: Wettability-dependent Electrochemical Interfacesmentioning
confidence: 99%
“…Gemäß Abbildung a zeigt E nach Anlegen einer moderaten, konstanten Stromdichte (≈0,1 mA cm −2 ) einen Spannungsabfall, der sich aus dem Ohm'schen Gesetz ( η Ohm ) ableiten lässt (Abbildung S11). Hierbei zeigt das Verhalten eine Kreisbogen‐förmige Überspannungsantwort ( η arc ) bevor das Gleichgewichtspotential ( E steady‐state ) erreicht wird . Wenn eine konstante Stromdichte j angelegt wird, verändert sich η Ohm augenblicklich in einer sehr kurzen Zeitspanne (≪ Sekunden), während η arc innerhalb von Sekunden bis Minuten ansteigt und E steady‐state typischerweise innerhalb von Minuten oder manchmal erst nach Stunden erreicht ist (stark abhängig vom untersuchten System) .…”
Section: Ergebnisse Und Diskussionunclassified