OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 15976
a b s t r a c tSoil pollution by persistent metal(loid)s present environmental and sanitary risks. While the effects of metal(loid)s on vegetation and macrofauna have been widely studied, their impact on microarthropods (millimetre scale) and their bioaccumulation capacity have been less investigated. However, microarthropods provide important ecosystem services, contributing in particular to soil organic matter dynamics. This study focussed on the impact of metal(loid) pollution on the structure and distribution of microarthropod communities and their potential to bioaccumulate lead (Pb). Soil samples were collected from a contaminated historical site with a strong horizontal and vertical gradient of Pb concentrations. Microarthropods were extracted using the Berlese method. The field experiments showed that microarthropods were present even in extremely polluted soils (30,000 mg Pb kg −1 ). However, while microarthropod abundance increased with increasing soil C/N content (R 2 = 0.79), richness decreased with increasing pollution. A shift in the community structure from an oribatid-to a springtail-dominated community was observed in less polluted soils (R 2 = 0.68). In addition, Pb bioamplification occurred in microarthropods, with higher Pb concentrations in predators than in detritivorous microarthropods. Finally, the importance of feeding and reproductive ecological traits as potentially relevant descriptors of springtail community structures was highlighted. This study demonstrates the interest of microarthropod communities with different trophic levels and ecological features for evaluating the global environmental impact of metal(loid) pollution on soil biological quality.