2003
DOI: 10.1016/s0031-3203(02)00167-x
|View full text |Cite
|
Sign up to set email alerts
|

Comparative analysis of different approaches to target differentiation and localization with sonar

Abstract: This study compares the performances of different methods for the differentiation and localization of commonly encountered features in indoor environments. Differentiation of such features is of interest for intelligent systems in a variety of applications such as system control based on acoustic signal detection and identification, map building, navigation, obstacle avoidance, and target tracking. Different representations of amplitude and time-of-2ight measurement patterns experimentally acquired from a real… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
1
0
2

Year Published

2005
2005
2024
2024

Publication Types

Select...
3
3
1

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(4 citation statements)
references
References 53 publications
0
1
0
2
Order By: Relevance
“…We can get ships radiated noise with formula (1) .Considering the propagation loss, we take the spherical spread loss formula [9] In the formula, R is the distance from ship to sonar, a is the sound absorption coefficient. With R=2Km,f=2KHz, Ship passive sonar signal from propagation loss can be shown as Figure 6.…”
Section: 12the Synthesis Of Ship Passive Sonar Signalmentioning
confidence: 99%
“…We can get ships radiated noise with formula (1) .Considering the propagation loss, we take the spherical spread loss formula [9] In the formula, R is the distance from ship to sonar, a is the sound absorption coefficient. With R=2Km,f=2KHz, Ship passive sonar signal from propagation loss can be shown as Figure 6.…”
Section: 12the Synthesis Of Ship Passive Sonar Signalmentioning
confidence: 99%
“…Adjusting the fractional order of the fractional FT of the input signal leads to an overall improvement of the neural network performance, as has been demonstrated on the example of recognition and position estimation of different objects from their sonar returns. In [92], a comparative analysis has been made of different approaches of target differentiation and localization, including the target differentiation algorithm, Dempster-Shafer evidential reasoning, different kinds of voting schemes, statistical pattern recognition techniques (the knearest neighbor classifier, the kernel estimator, the parameterized density estimator, linear discriminant analysis, and the fuzzy c-means clustering algorithm), as well as artificial neural networks, trained with different input signal representations obtained using preprocessing techniques such as discrete ordinary and fractional Fourier, Hartley and wavelet transforms, and Kohonen's self-organizing feature map. It has been shown that the use of neural networks trained by the back-propagation algorithm with fractional FT preprocessing results in near-perfect differentiation, around 85% correct range estimation, and around 95% correct azimuth estimation.…”
Section: Fractional Ft Implemented As Neural Networkmentioning
confidence: 99%
“…No obstante, al utilizar este tipo de sensores hay que tomar en cuenta ciertas 1.2. OBJETIVOS limitaciones como por ejemplo que el sensor de ultrasonidos tiene una resolución angular muy pobre(típicamente 25 grados) [16], o que el sensor de infrarrojos ofrece poca precisión y fiabilidad en la medición de distancias(aproximadamente 10 %) [18]. Estos razonamientos, aunado al hecho de que los sensores de bajo coste en general son poco fiables, obligan a desarrollar metodologías mediante las cuales se puedan fusionar la información proveniente de múltiples sistemas sensoriales, a fin de hacerle frente a los diversos retos de localización y modelado del entorno a los cuales se enfrenta un robot móvil con características de autonomía.…”
Section: Capítulo 1 Motivación Objetivos Y Organización De Esta Tesisunclassified
“…Basándose en la figura 4.28, se determina que a partir de los datos de posición del robot x, y, θ y de los datos de distancia de los sensores de infrarrojos 16 , la proyección de cada uno de los puntos reflectores p = x p , y p en el plano cartesiano global, se puede calcular de acuerdo a las ecuaciones…”
Section: Modelado De Los Reflectores Extraídos Mediante El Sensor De unclassified