2020
DOI: 10.1016/j.biocontrol.2020.104280
|View full text |Cite
|
Sign up to set email alerts
|

Combined releases of soil predatory mites and provisioning of free-living nematodes for the biological control of root-knot nematodes on ‘Micro Tom tomato’

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
19
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(20 citation statements)
references
References 36 publications
0
19
0
1
Order By: Relevance
“…Under greenhouse conditions, a reduction of 78% and 72% were observed in the population of T. tabaci in the presence of G aculeifer and P. bituberosus, respectively in onion plants (Castro-López and Martínez-Osorio 2021). However, complementary field studies should be conducted to explore other possibilities, including the association of T. tabaci pre-pupae and pupae with other food sources such as nematodes (Rueda-Ramírez et al 2019; Azevedo et al 2019, 2020, naturally found in agricultural ecosystems (Rueda-Ramírez et al 2018. The use of entomopathogenic fungi in combination with predatory mites has shown good potential, as shown in the study conducted by Saito and Brownbridge (2016), in which mortality of thrips was higher than 90%.…”
Section: Discussionmentioning
confidence: 99%
“…Under greenhouse conditions, a reduction of 78% and 72% were observed in the population of T. tabaci in the presence of G aculeifer and P. bituberosus, respectively in onion plants (Castro-López and Martínez-Osorio 2021). However, complementary field studies should be conducted to explore other possibilities, including the association of T. tabaci pre-pupae and pupae with other food sources such as nematodes (Rueda-Ramírez et al 2019; Azevedo et al 2019, 2020, naturally found in agricultural ecosystems (Rueda-Ramírez et al 2018. The use of entomopathogenic fungi in combination with predatory mites has shown good potential, as shown in the study conducted by Saito and Brownbridge (2016), in which mortality of thrips was higher than 90%.…”
Section: Discussionmentioning
confidence: 99%
“…In several cases, the use of organic amendments has been shown to reduce populations of organisms considered to be pests such as phytoparasitic nematodes (e.g., [74][75][76][77][78]), and phytophagous mites (e.g., [79]), as well as damage by some phytophagous insects (e.g., [80]), and the increase of organisms considered beneficial such as free-living nematodes (e.g., [74,76,78,80]) and predatory mites (e.g., [74,75,79]). At laboratory level and on a small scale, it has been shown that, for some organisms such as some predatory mite species, the addition of alternative such as free-living nematodes can enhance their survival and reproduction and, in turn, their densities [81][82][83], which would be reflected in an increase in the control of phytophagous organisms [82,83]. Thus, increasing diversity in the soil, which also includes alternative prey, can favor the increase and permanence of biological control agents.…”
Section: The Importance Of a Holistic Approach For Better Pest Manage...mentioning
confidence: 99%
“…(Actinotrichida: Trombidifromes: Erythraeidae) Frankliniella occidentalis 27 Blattisocius dolichus Ma (Parasitiformes: Mesotigmata: Blattisociidae) Radophulus similis (Cobb) Thorne (burrowing nematode) (Rhabditica: Panagrolaimida: Pratylenchidae ) 11 Meloidogyne incognita 37 Geolaelaps gillespiei n. sp. (Parasitiformes: Mesostigmata: Lealapidae) Frankliniella occidentalis 5 Parasitus bitoberosus Karg (Parasitiformes: Mesotigmata: Parasitidae) Thrips tabaci 9 Lasioseius fimetorum Karg (Parasitiformes: Mesostigmata: Ascidae) Frankliniella occidentalis 12 Cunaxa capreolus (Berlese) (Acariformes: Trombidiformes: Cunaxidae) Meloidogyne incognita 2 Tylenchulus semipenetrans Cobb (citrus nematode) (Tylenchina: Tylenchida: Tylenchulidae) 2 Table reference list: 1 Ajvad et al ( 2018 ); 2 Al-Azzazy and Al-Rehiayani ( 2022 ); 3 Azevedo et al ( 2020 ); 4 Baatrup et al ( 2006 ); 5 Beaulieu ( 2009 ); 6 Berndt et al ( 2004a ); 7 Berndt et al ( 2004b ); 8 Castilho et al ( 2009 ); 9 Castro-López and Martínez-Osorio ( 2021 ); 10 Chambers et al ( 1993 ); 11 Chen et al ( 2013 ); 12 Enkegaard and Brødsgaard ( 2000 ); 13 Freire et al ( 2007 ); 14 Gillespie and Quiring ( 1990 ); 15 Glockemann ( 1992 ); 16 Jensen et al ( 2019 ); 17 Jess and Bingham ( 2004 ); 18 Kasuga et al ( 2006 ); 19 Lesna et al ( 1996 ); 20 Lesna et al ( 2000 ); 21 Lesna et al ( 2014 ); 22 Messelink and van Wensveen ( 2003 ); 23 Messelink and van Slooten ( 2004 ); 24 Messelink and van Holstein-Saj ( 2006 ); 25 Messelink et al ( 2008 ); 26 Moreira et al ( 2015 ); 27 Muñoz-Cárdenas et al ( 2014 ); 28 Muñoz-Cárdenas ( …”
Section: Introductionmentioning
confidence: 99%
“… Table reference list: 1 Ajvad et al ( 2018 ); 2 Al-Azzazy and Al-Rehiayani ( 2022 ); 3 Azevedo et al ( 2020 ); 4 Baatrup et al ( 2006 ); 5 Beaulieu ( 2009 ); 6 Berndt et al ( 2004a ); 7 Berndt et al ( 2004b ); 8 Castilho et al ( 2009 ); 9 Castro-López and Martínez-Osorio ( 2021 ); 10 Chambers et al ( 1993 ); 11 Chen et al ( 2013 ); 12 Enkegaard and Brødsgaard ( 2000 ); 13 Freire et al ( 2007 ); 14 Gillespie and Quiring ( 1990 ); 15 Glockemann ( 1992 ); 16 Jensen et al ( 2019 ); 17 Jess and Bingham ( 2004 ); 18 Kasuga et al ( 2006 ); 19 Lesna et al ( 1996 ); 20 Lesna et al ( 2000 ); 21 Lesna et al ( 2014 ); 22 Messelink and van Wensveen ( 2003 ); 23 Messelink and van Slooten ( 2004 ); 24 Messelink and van Holstein-Saj ( 2006 ); 25 Messelink et al ( 2008 ); 26 Moreira et al ( 2015 ); 27 Muñoz-Cárdenas et al ( 2014 ); 28 Muñoz-Cárdenas ( 2017 ); 29 Navarro-Campos et al ( 2016 ); 30 Navarro-Campos et al ( 2020 ); 31 Pozzebon et al ( 2015 ); 32 Rahman et al ( 2012 ); 33 Sabelis et al ( 2008 ); 34 Wright and Chambers ( 1994 ); 35 Wu et al ( 2014 ); 36 Wu et al ( 2016 ); 37 Xu et al ( 2014 ); 38 Yan et al ( 2022 ); 39 Yang et al ( 2020 ); 40 Zhang et al ( 2021 ) …”
Section: Introductionmentioning
confidence: 99%