2019
DOI: 10.1016/j.jnucmat.2018.11.024
|View full text |Cite
|
Sign up to set email alerts
|

Cold sintering and durability of iodate-substituted calcium hydroxyapatite (IO-HAp) for the immobilization of radioiodine

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
18
0
1

Year Published

2019
2019
2022
2022

Publication Types

Select...
9

Relationship

1
8

Authors

Journals

citations
Cited by 34 publications
(19 citation statements)
references
References 44 publications
0
18
0
1
Order By: Relevance
“…Based on our previous studies 33,58 and current results, the reported immobilization route may be used for the solidication of radionuclides by capturing them from the liquid and gaseous wastes. The developed matrix might be used to immobilize gaseous waste (radioiodine) captured by fumed silica, silver functionalized silica or bismuth functionalized silica based gas adsorbents/lters.…”
Section: Resultsmentioning
confidence: 73%
“…Based on our previous studies 33,58 and current results, the reported immobilization route may be used for the solidication of radionuclides by capturing them from the liquid and gaseous wastes. The developed matrix might be used to immobilize gaseous waste (radioiodine) captured by fumed silica, silver functionalized silica or bismuth functionalized silica based gas adsorbents/lters.…”
Section: Resultsmentioning
confidence: 73%
“…In addition to microstructural and mineralogical analysis, leaching tests (long-term leaching, simulated environment leaching, and acid corrosion tests) and mechanical performance tests (compressive strength, freezethaw performance, and high-temperature performance tests) were also conducted to study the performance of the solidified body. Jang et al used similar experimental [35,38,39] methods to study the physical barrier effect of the geopolymer waste form on the diffusivity of Cs and Sr [62], and the difference was that the nuclide simulants were CsCl and SrCl 2 •6H 2 O. Cs + -compounds, which have the properties of water solubility, room temperature stability, and low toxicity, which can be selected as the simulants of 137 Cs in the experiments. According to former studies, the mass proportion of Cs + in the cementitious mixture was no more than 5%, and ICP-MS or ICP-OES was usually used to quantitatively analyze Cs + in the leaching test.…”
Section: Simulated 137 Cs In the Immobilization Methods By Usingmentioning
confidence: 99%
“…Except for 137 Cs and 90 Sr, which have been widely studied, some other radionuclides such as 239 Pu, 60 Co, and 129 I are also common nuclides in nuclear waste [96,97]. ese radionuclides are usually distributed in HMW and MMW, which have strong radiation hazards [35,98]. It is important to pretreat and stabilize these elements prior to disposal.…”
Section: Simulants Of Some Other Nuclides and Experimental Methodsmentioning
confidence: 99%
“…4 Temperature gradient model of zircon interface by using microwave synthesis [32] 放电等离子烧结(Spark Plasma sintering, SPS)又 称为等离子辅助烧结(Plasma Activated), 是在粉末 颗粒间直接通入脉冲电流进行加热烧结, 具有加热 均匀、升温速度快、烧结温度低(比热压烧结可降低 100~200 ℃)、烧结时间短、生产效率高、致密度高 等特点。近年, 该方法在 SYNROC 固化体烧结方面 展现出良好的工程化前景。Wang 等 [34] 采用该方法 成功在 1600~1700 ℃, 80 MPa, 3 min 条件下, 在 Gd 2-x Nd x Zr 2-y Ce y O 7 (0≤x, y≤2.0)固化体中完成了 Nd 和 Ce 的共掺杂。 熔盐合成法(Molten salt synthesis, MSS)采用低 熔点的一种盐类或多种盐组成低熔点盐类体系作为 反应介质, 合成过程中出现液相, 反应物在熔盐中 有一定的溶解度, 加快了离子的扩散速率, 使得反 应在原子级进行。该法相对于常规固相法而言, 具 有制备方法简单, 不需要复杂的程序和危险的试剂, 能有效降低合成温度和反应时间, 制备的粉体化学 成分均匀、晶体形貌好、物相纯度高、熔盐可重复 使用等优点 [35] , 在 MAX [36] 、MXenes [37] 、二维层状 材料 [38] 、陶瓷固化体 [39][40] 等材料合成方面具有独特 优势。 Wu 等 [39] [48] 利用超高温烧结 技术, 直接在数秒内合成块体陶瓷材料, 大大提高 了材料的合成速度, 改善了材料质量, 见图 5。超高 温烧结技术的特点是温度分布均匀, 加热速度(10 3~ 10 4 ℃/min)和冷却速度(高达 10 4 ℃/min)超快, 并且 烧结温度高(高达 3000 ℃)。 超高的升温速率和超高 图 5 碳热冲击超高温快速烧结 [48] Fig. 5 Carbon thermal shock ultra-high temperature rapid sintering [48] 温使超快烧结时间达到约 10 s, 极大提升了材料的 合成速度, 使得高通量材料筛选成为可能。超高的 温度、超快的加热速度和退火速度提高了材料的烧 结质量。该方法在人造岩石(陶瓷)固化尤其是对易 挥发性核素固化方面具有潜在应用前景。 与此同时, 还要考虑到低熔点放射性核素的特 殊性, 诸如放射性碘在 500 ℃时容易从相关化合物 中挥发出来, 所选固化类方法必须在高度控制和密 封的环境下进行。这里介绍几种极低温合成方法。 Lu 等 [49] 通过高能球磨机(HEBM)的低温固相反应 一步法合成碘磷灰石; Cao 等 [50] 利用湿化学方法在 40 ℃下合成了 Pb 10 (VO 4 ) 6 I 2 基磷灰石废料; Hassan 等 [51] 采用湿法沉淀法合成了单相纳米晶碘取代羟 基磷灰石(IO-HAp), 并在 200 ℃、500 MPa 单轴压 力下, 对含有 7wt%取代碘的 IO-HAp 干粉进行烧 结。此外, Yang 等 [52] 还将含碘废料与稳定添加剂 Bi 2 O 3 和低温烧结玻璃混合, 经造球和烧结工艺制 成玻璃复合材料。 4 人造岩石固化核素的机理 SYNROC 固化概念的本质是晶格固化, 放射性 核素通过"类质同象" 部分或完全替代矿物(陶瓷) 固化体晶格中不同位点。Goldschmidt 和 Grimm [53] 提出: 在晶体结构中, 当相互取代的两种质点(原 子、离子或分子)拥有一样的价态并且满足半径差值 不超过较小质点的 15%时, 即(r 1 -r 2 )/r 2 <15%的条件 时, 两种质点就可以发生相互代替。Ewing 认为 [54] , 当 (r 1 -r 2 )/r 2 <10%~15%, 一 般 形 成 完 全 类 质 同 象 ; 10%<(r 1 -r 2 )/r 2 <20%~25%, 完全类质同象只能在高 [57] 。 化学浸出实验方法包括 PCT(Standard Product Consistency) 法 、 MCC(Materials Characterization Center)法、VHT(蒸汽浸泡法)和流通法等。固化体 化学稳定性的评估多采用 MCC、PCT 等标准测试 方法, 国内主要参考 GB 7023-86。MCC 测试分为 MCC-1 至 MCC-5 共 5 种方法来满足不同的测试需 求目的。其中 MCC-1 [58] 应用最为广泛。MCC-1 与 MCC-2 是表征不同玻璃试样的浸出性能, 均属于静 态浸出测试。 MCC-1 是将块状试样浸泡于浸出液中, 保持恒定的 S/V(参与反应的玻璃总表面积(S)/反应 溶液的体积(V), m -1 )比值和温度, 浸泡一定天数后 测量浸出液中的浸出元素质量, 进而评价样品抗浸 出性能。MCC-2 是在高温下的静态浸出测试, 浸出 温度比 MCC-1 更高。1994 年美国材料实验协会 (ASTM)发布了 PCT 法 [59] , PCT 法使用粉末状的玻 璃固化体, 这大大提高了 S/V 值。另外, PCT 方法又 根据需求不同分可为 A 和 B 两种方法, A 方法适用 于进行评价比较; B 方法可根据需求改变各种参数 (温度、时间、浸出溶液类型等)。…”
Section: 等级结构固化unclassified