The physiological and biochemical characterization of Streptococcus salivarius mutants isolated by positive selection for resistance to 0.5 mM 2-deoxyglucose in the presence of lactose are reported. We found 2 classes of mutants following a series of experiments that included: growth rate determinations, uptake studies, measurement of phosphotransferase system (PTS) activities and detection of the IIIman proteins by Western blotting and analysis of [32P]PEP-phosphorylated proteins. Class 1 mutants did not possess the low-molecular-weight form of IIIman. They did not grow on mannose and were unable to transport 2-deoxyglucose. On the other hand, class 2 mutants possessed the 2 forms of IIIman, grew readily on mannose and transported 2-deoxyglucose, albeit at a lower rate than the parental strain. Both classes of mutants exhibited abnormal growth in media containing mixtures of sugars. Moreover, derepression of genes coding for catabolic enzymes was observed in all the mutant strains. Our data suggested that the role of the mannose PTS in the control of sugar utilization in S. salivarius is complex and may involve the participation of several components.