Multiple organ failure (MOF) is a life-threatening condition. Due to its urgency and high mortality rate, early detection is critical for clinicians to provide appropriate treatment. In this paper, we perform quantitative analysis on early MOF prediction with comprehensive machine learning (ML) configurations, including data preprocessing (missing value treatment, label balancing, feature scaling), feature selection, classifier choice, and hyperparameter tuning. Results show that classifier choice impacts both the performance improvement and variation most among all the configurations. In general, complex classifiers including ensemble methods can provide better performance than simple classifiers. However, blindly pursuing complex classifiers is unwise as it also brings the risk of greater performance variation.