2023
DOI: 10.22541/au.168306849.92499102/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Click-Chemistry Hydrogel Delivery Aggregation-Induced Emission-Active Nanovesicles Enables “One-Stop” Remodeling and Antibiosis on Deep Scald Wound

Abstract: The serve burn or scald wounds always face persistent infections and self-repair function decline caused by serious tissue necrosis, leading to delayed healing or even sepsis. In this work, we proposed a click-chemistry hydrogel delivery system of antibacterial and tissue remodeling function nanovesicles for deep scald wound treatment. An hydrophilic photodynamic aggregation-induced emission photosensitizer 4-(2-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)vinyl)-1-(2-hydroxyethyl) pyridin-1-ium bromide (THB) was… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 35 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?