Abstract. New results in the representation theory of "semisimple" algebraic monoids are obtained, based on Renner's monoid version of Chevalley's big cell. (The semisimple algebraic monoids have been classified by Renner.) The rational representations of such a monoid are the same thing as "polynomial" representations of the associated reductive group of units in the monoid, and this representation category splits into a direct sum of subcategories by "homogeneous" degree. We show that each of these homogeneous subcategories is a highest weight category, in the sense of Cline, Parshall, and Scott, and so equivalent with the module category of a certain finite-dimensional quasihereditary algebra, which we show is a generalized Schur algebra in S. Donkin's sense.