2021
DOI: 10.2969/jmsj/81778177
|View full text |Cite
|
Sign up to set email alerts
|

Classification of Enriques surfaces covered by the supersingular $K3$ surface with Artin invariant 1 in characteristic 2

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2022
2022

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 21 publications
0
1
0
1
Order By: Relevance
“…(12) : u 0 v 0 − u 1 v 1 = 0 (p 4 , p 8 , p 9 , p 10 ), (13) : (12,34,56) : u 0 v 1 + u 1 v 0 = 0 (p 1 , p 3 , p 5 , p 7 ), (12,35,46) : (12,36,45) : (13,24,56) : u 0 v 0 − ζ 2 u 1 v 1 = 0 (p 1 , p 5 , p 9 , p 10 ), (13,25,46) : (13,26,45) : (14,23,56) : (14,25,36) : (14,26,35) : (15,23,46) : (15,24,36) : (15,26,34) : (16,23,45) : (16,24,35) : (16,25,34) :…”
Section: Coble Surfaces and Coble-mukai Latticesunclassified
See 1 more Smart Citation
“…(12) : u 0 v 0 − u 1 v 1 = 0 (p 4 , p 8 , p 9 , p 10 ), (13) : (12,34,56) : u 0 v 1 + u 1 v 0 = 0 (p 1 , p 3 , p 5 , p 7 ), (12,35,46) : (12,36,45) : (13,24,56) : u 0 v 0 − ζ 2 u 1 v 1 = 0 (p 1 , p 5 , p 9 , p 10 ), (13,25,46) : (13,26,45) : (14,23,56) : (14,25,36) : (14,26,35) : (15,23,46) : (15,24,36) : (15,26,34) : (16,23,45) : (16,24,35) : (16,25,34) :…”
Section: Coble Surfaces and Coble-mukai Latticesunclassified
“…The Coble surfaces of type MI, MII are suggested by Mukai and Ohashi [19]. There are several Enriques surfaces with infinite group of automorphisms whose nef cones contain the same finite polytope defined by 40 roots as in the case of Coble surfaces of MI, MII (see Kondō [15], Mukai and Ohashi [18]). In these cases only a part of 40 roots are realized by (−2)curves.…”
Section: Introductionmentioning
confidence: 99%