Cytosine DNA methylation is a heritable epigenetic mark present in many eukaryotic organisms. Although DNA methylation likely has a conserved role in gene silencing, the levels and patterns of DNA methylation appear to vary drastically among different organisms. Here we used shotgun genomic bisulfite sequencing (BS-Seq) to compare DNA methylation in eight diverse plant and animal genomes. We found that patterns of methylation are very similar in flowering plants with methylated cytosines detected in all sequence contexts, whereas CG methylation predominates in animals. Vertebrates have methylation throughout the genome except for CpG islands. Gene body methylation is conserved with clear preference for exons in most organisms. Furthermore, genes appear to be the major target of methylation in Ciona and honey bee. Among the eight organisms, the green alga Chlamydomonas has the most unusual pattern of methylation, having non-CG methylation enriched in exons of genes rather than in repeats and transposons. In addition, the Dnmt1 cofactor Uhrf1 has a conserved function in maintaining CG methylation in both transposons and gene bodies in the mouse, Arabidopsis, and zebrafish genomes.BS-Seq | epigenetic profiling | DNA methylation | gene body methylation |
UHRF1C ytosine DNA methylation is an epigenetic mark important in many gene regulatory systems, including genomic imprinting, X-chromosome inactivation, silencing of transposons and other repetitive DNA sequences, as well as expression of endogenous genes. Methylation is conserved in most major eukaryotic groups, including many plants, animals, and fungi, although it has been lost from certain model organisms such as the budding yeast Saccharomyces cerevisiae and nematode worm Caenorhabditis elegans (1-3). DNA methylation can be categorized into three types according to the sequence context of the cytosines, namely CG, CHG, and CHH (H = A, C, or T). CG methylation is maintained by conserved Dnmt1 DNA methyltransferase enzymes. CHH methylation, and, to some extent CHG methylation, is generally maintained by the activity of the conserved Dnmt3 methyltransferases, whereas high levels of CHG methylation seen in the model plant Arabidopsis are maintained by the plant-specific methyltransferase CMT3 (2, 3). Generally speaking, DNA methylation is thought to occur "globally" in vertebrates, with CG sites being heavily methylated genome-wide except for those in CpG islands, whereas invertebrates, plants, and fungi have "mosaic" methylation, characterized by interspersed methylated and unmethylated domains (4). These differences are an interesting starting point for studying divergence in methylation pathways and regulatory mechanisms; however, determining precise genomescale methylation patterns has been a challenge for complex genomes until the recent development of high-throughput sequencing technology. In this paper, we generated shotgun bisulfite sequencing data to profile DNA methylation in eight eukaryotic organisms. These organisms display wide variations in methylati...