The development of blue semiconductor light-emitting diodes (LEDs) has produced potential applications for Pr-doped materials that can absorb blue light, especially crystals, and we now report structure and optical properties for high-quality Pr-doped single crystals of yttria-stabilized zirconia (YSZ) grown by the optical floating zone (FZ) method. X-ray diffraction (XRD) and Raman spectroscopy showed that all of the single crystal samples were in the cubic phase, whereas the corresponding ceramic samples contained a mixture of monoclinic and cubic phases. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) spectroscopy showed that Pr was present as the Pr3+ ion in ceramic rods and single crystals after heating to high temperatures. The absorption and photoluminescence excitation (PLE) spectra of the Pr-doped YSZ crystals measured at room temperature showed strong absorption of blue light, while their photoluminescence (PL) spectra showed five emission peaks at 565 nm, 588 nm, 614 nm, 638 nm, and 716 nm under 450 nm excitation. The optimum luminescence properties were obtained with the crystal prepared using 0.15 mol% Pr6O11, and those with higher concentrations showed evidence of quenching of the luminescence properties. In addition, the color purity of Pr-doped YSZ single crystal reached 98.9% in the orange–red region.