A new methodology for bromine stable isotope determination by continuous-flow isotope ratio mass spectrometry (CF-IRMS) was developed. The technique was tested on inorganic samples. Inorganic bromide was precipitated in the form of silver bromide by using silver nitrate in a standard methodology. Bromine stable isotope analysis was carried out on methyl bromide (CH3Br) after converting silver bromide to methyl bromide by reacting it with methyl iodide (CH3I). The system used in this study is an IsoPrime IRMS, with analytical capabilities of both dual-inlet and continuous-flow modes coupled with an Agilent 6890 GC equipped with a CTC Analytics CombiPAL autosampler. This new technique measures samples as small as 0.2 mg of AgBr (1 micromol of Br-). The bromine stable isotope analysis using continuous flow technology showed excellent precision and accuracy. The internal precision using pure methyl bromide gas is better than +/-0.03 per thousand (+/-SD); the external precision using seawater standard is better than +/-0.06 per thousand (+/-SD) for n = 12. Moreover, the sample analysis time is 16 min, as compared to 75 min needed in previous techniques. This allows for 50 samples to be analyzed in 1 day, as compared to 8 samples using the conventional techniques. A series of natural saline formation waters and brines from sedimentary and crystalline rock environments was measured by this new methodology to test the potential natural range of delta81Br. The bromine isotopic composition of the samples ranged from 0.00 to +1.80 per thousand relative to standard mean ocean bromide (SMOB). Initial trends and distinctive isotopic difference were noticed between crystalline shield brines and sedimentary formation brines.