Metrics & MoreArticle Recommendations CONSPECTUS: Surface chemistry is a key area of study in the chemical sciences, and many system properties are dominated by the chemistry at the interface between two bulk media. While the interface may have a large influence on the system behavior, there are relatively few molecules at the interface compared to the bulk; thus, probing their unique properties has become a specialized field in physical chemistry. In addition to the heterogeneous phase chemistry, surfaces also present spatial heterogeneity (Chemistry in Two Dimensions). This 2D chemistry affects the properties as much as the heterogeneous phases. If we consider the Cartesian z-axis as defining the dimension across the interface between the two bulk phases, then the x−y plane is the 2D region of the surface. We might even consider that the majority of surface chemistry has been concerned with this z-dimension, i.e., surface structure, partition excess, thermodynamics, etc. relative to the bulk, where the 2D distribution was only considered on average. This treatment is understandable since few techniques provide the spatial and chemical resolution needed to deduce the effects of 2D heterogeneity on the surface properties. It is desirable to use an all-optical technique for interface studies because the optical methods provide the chemical specificity through spectroscopy. Also, the use of second-order spectroscopy is typically surface-sensitive without background subtractions or enhancement mechanisms that could limit the range of systems to be investigated. In this Account, the development and selected results of sum frequency generation microscopy and its contributions to the surface chemistry are presented. Sum frequency generation (SFG) provides a unique probe for studying surface chemistry in ambient conditions with surface specificity. SFG provides image contrast based on multiplechemically importantmechanisms such as chemical functional groups, molecular orientation, surface concentration, molecular conformation, local electric fields, among others.To understand the spatial distribution of heterogeneous chemistry, multiple microscopy methods have been developed which utilize the SFG process to yield spatial information with chemical sensitivity. These spectroscopic-microscopies come with unique advantages as well as challenges. Multiple solutions have been developed in this field to overcome the challenges and improve the advantages. In this Account, some of the leading SFG surface microscopies for surface studies are introduced. Initially, direct imaging of the SFG signal onto a CCD camera provided spatially and spectrally resolved imaging of monolayers on surfaces. However, to speed up the imaging process, the technique of compressive sensing was applied to SFG imaging. Most recently the use of machine learning methods and target factor analysis have improved the quality and acquisition speed of SFG images.