2013
DOI: 10.1080/21680396.2013.769310
|View full text |Cite
|
Sign up to set email alerts
|

Chemical and biological sensing using liquid crystals

Abstract: The liquid crystalline state of matter arises from orientation-dependent, non-covalent interaction between molecules within condensed phases. Because the balance of intermolecular forces that underlies formation of liquid crystals is delicate, this state of matter can, in general, be easily perturbed by external stimuli (such as an electric field in a display). In this review, we present an overview of recent efforts that have focused on exploiting the responsiveness of liquid crystals as the basis of chemical… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

5
233
0
5

Year Published

2014
2014
2021
2021

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 315 publications
(243 citation statements)
references
References 113 publications
5
233
0
5
Order By: Relevance
“…The response is due to the ability of certain gas molecules, even at low concentration, to strongly influence the liquid crystal self-assembly [40,[42][43][44][45], triggering a reorientation of the liquid crystal director [32,34,43,44], a change in period of the supramolecular helix of shortpitch cholesterics [19,36,42,[46][47][48], or even complete loss of long-range ordering [11]. In particular, Abbott and his group [35,39,[43][44][45] demonstrated the capability of nematic LCs as sensors for detecting nerve agents at concentrations as low as part per billion. Recently, the group also demonstrated highly sensitive detection of toluene vapour using nematics [32].…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The response is due to the ability of certain gas molecules, even at low concentration, to strongly influence the liquid crystal self-assembly [40,[42][43][44][45], triggering a reorientation of the liquid crystal director [32,34,43,44], a change in period of the supramolecular helix of shortpitch cholesterics [19,36,42,[46][47][48], or even complete loss of long-range ordering [11]. In particular, Abbott and his group [35,39,[43][44][45] demonstrated the capability of nematic LCs as sensors for detecting nerve agents at concentrations as low as part per billion. Recently, the group also demonstrated highly sensitive detection of toluene vapour using nematics [32].…”
Section: Introductionmentioning
confidence: 99%
“…We are currently experiencing an increasing interest in gas sensors based on liquid crystals (LCs) [32][33][34][35][36][37][38][39][40][41], functioning at room temperature, requiring no energy supply as they are powered by thermal energy alone, and delivering a strong optical response that is easily detected without complex spectroscopic equipment. The response is due to the ability of certain gas molecules, even at low concentration, to strongly influence the liquid crystal self-assembly [40,[42][43][44][45], triggering a reorientation of the liquid crystal director [32,34,43,44], a change in period of the supramolecular helix of shortpitch cholesterics [19,36,42,[46][47][48], or even complete loss of long-range ordering [11].…”
Section: Introductionmentioning
confidence: 99%
“…Изучение таких систем при концентрациях, близких к их мицеллярной растворимости, является в настоящее время актуальным для биологии и медицины в связи с поисками новых антибиотиков на основе пептидов, модифици-рованных ионными ПАВ [7].…”
Section: Introductionunclassified
“…В последние десятилетия эти исследования приобретают новое звучание в связи с успехами моделирования биологических объек-тов (липидов, протеинов, клеточных мембран и др. ), в том числе и с помощью мицеллярных и ве-зикулярных моделей [2]. В ряде публикаций [3][4][5][6][7][8] рассмотрены условия термодинамического и ме-ханического равновесия на искривленных поверх-ностях, а также применимости к нанообъектам уравнений, связывающих кривизну поверхности с поверхностным натяжением.…”
Section: Introductionunclassified