1998
DOI: 10.1143/jjap.37.3495
|View full text |Cite
|
Sign up to set email alerts
|

Charged Particle Emission and Luminescence upon Bending Fracture of Granite

Abstract: Several laboratory experimental studies of photoemission characteristics of rocks as they fracture have been conducted to elucidate the mechanism of earthquake lightning (EQL). In most of these studies, granite, which exhibits remarkable photoemission, is widely used to explain the mechanism attributed to the piezoelectric effect or piezo-induced effect of quartz, a constituent mineral of granite. Photoemission induced by rock fracturing has been observed prominently during landslides caused by earthquakes. Ac… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
20
0
2

Year Published

2002
2002
2022
2022

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 29 publications
(22 citation statements)
references
References 18 publications
0
20
0
2
Order By: Relevance
“…Electromagnetic wave emission has various potential geophysical applications, such as research into the electromagnetic phenomena associated with earthquakes [2][3][4][5][6][7][8][9], investigation of the Earth's crust, monitoring cracks in rock deformation experiments [10,11] and so on. In order to elucidate the electromagnetic phenomena during fracture of several rocks, including granite and andesite, quasi-static compression tests were carried out and acoustic emission was also measured [12][13][14][15][16]. The majority of previous works concerning electromagnetic phenomena during the deformation and fracture of rocks have been performed under 'static' and 'compressive' loading.…”
Section: Introductionmentioning
confidence: 99%
“…Electromagnetic wave emission has various potential geophysical applications, such as research into the electromagnetic phenomena associated with earthquakes [2][3][4][5][6][7][8][9], investigation of the Earth's crust, monitoring cracks in rock deformation experiments [10,11] and so on. In order to elucidate the electromagnetic phenomena during fracture of several rocks, including granite and andesite, quasi-static compression tests were carried out and acoustic emission was also measured [12][13][14][15][16]. The majority of previous works concerning electromagnetic phenomena during the deformation and fracture of rocks have been performed under 'static' and 'compressive' loading.…”
Section: Introductionmentioning
confidence: 99%
“…Faulting of intact rock samples in uniaxial condition occurs only when the specimen is subject to a high stress as a result of the precise alignment of apparatus and specimen, and large piezoelectricy is expected in such a condition. Our camera was not sensitive enough to record what Brady and Rowell recorded or, similarly, what Martelli et al (1989) and Kawaguchi (1998) observed, so that we are not able to rule out that the weaker luminescence does not occur in our experimental condition. At the same time, their devices were not able to captivate variation in brightness, and our observation of bright spots on the fault is a new finding.…”
Section: Resultsmentioning
confidence: 66%
“…Постепенная локализация процесса накопле-ния повреждений в выделенной пространственной об-ласти может проходить на фоне равномерного образо-вания дефектов во всем объеме материала. В настоя-щее время решению этой задачи посвящено множество исследований, направленных на всестороннее изучение процессов, сопровождающих накопление повреждений, различными разрушающими и неразрушающими мето-дами [5][6][7][8][9][10][11][12][13][14][15][16][17][18]: ультразвуковым методом, методами акусти-ческой и электромагнитной эмиссии, фрактолюминес-ценции, нейтронной эмиссии, оптической и электронной микроскопии и др.…”
Section: Introductionunclassified
“…Постепенная локализация процесса накопле-ния повреждений в выделенной пространственной об-ласти может проходить на фоне равномерного образо-вания дефектов во всем объеме материала. В настоя-щее время решению этой задачи посвящено множество исследований, направленных на всестороннее изучение процессов, сопровождающих накопление повреждений, различными разрушающими и неразрушающими мето-дами [5][6][7][8][9][10][11][12][13][14][15][16][17][18]: ультразвуковым методом, методами акусти-ческой и электромагнитной эмиссии, фрактолюминес-ценции, нейтронной эмиссии, оптической и электронной микроскопии и др.Несмотря на достигнутый прогресс в исследовании предвестников перехода от стадии дисперсного накоп-ления повреждений к стадии формирования очага мак-роразрушения, вопрос о физических механизмах такого перехода и факторах, на него влияющих, до сих пор остается открытым. Ранее в работах [1,2,19-22] было показано, что переход между двумя стадиями обус-ловлен достижением плотностью дефектов (трещин) в деформируемом материале критической величины, после которой дефекты начинают взаимодействовать между собой упругими полями.…”
unclassified