2008
DOI: 10.1090/s1088-4165-08-00339-7
|View full text |Cite
|
Sign up to set email alerts
|

Characters of Speh representations and Lewis Caroll identity

Abstract: Abstract. We give a new and elementary proof of Tadić formula for characters of Speh representations of GL(n, A), A a central division algebra over a non-Archimedean local field, based on Lewis Caroll determinantal identity.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
11
0
2

Year Published

2010
2010
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(14 citation statements)
references
References 13 publications
0
11
0
2
Order By: Relevance
“…As mentioned before, the formula (1.1) was proved by Tadić in the case of Speh representations [Tad95] and his proof was simplified in [CR08].…”
Section: Introductionmentioning
confidence: 86%
See 1 more Smart Citation
“…As mentioned before, the formula (1.1) was proved by Tadić in the case of Speh representations [Tad95] and his proof was simplified in [CR08].…”
Section: Introductionmentioning
confidence: 86%
“…Tadić's ingenious argument transfers the problem to a question about complex groups. Later on, the argument was simplified by Chenevier and Renard [CR08] by a clever use of the Desnanot-Jacobi identity of determinants (also known as Dodgson's rule of determinants). Both proofs rely on the determination of the composition series at the edge of a complementary series, and thus they heavily rely on unitarity.…”
Section: Introductionmentioning
confidence: 99%
“…Again from the Lewis Carroll identity ( [14]), we deduce easily from this a formula for composition series of ends of complementary series…”
Section: 1mentioning
confidence: 98%
“…[13], voir paragraphe 4.1 pour la définition), classe qui généralise de façon naturelle celle de représentation de Speh (et qui contient aussi les représentations elliptiques). On montre que la conjecture [5,Conjecture 3.11] sur l'irréductibilité du transfert de Jacquet-Langlands est vraie pour des telles représentations et on répond à la question posée dans [13,Remark 5], qui apparaît aussi naturellement dans [11].…”
Section: Introductionunclassified
“…Soit π une représentation irréductible de G. On sait qu'il existe un unique élément LJ(π) du groupe de Grothendieck des représentations de G tel que LJ(π) soit le transfert de π ( La formule (dite des caractères) démontrée dans [13], qui généralise les ré-sultats de [22] et [11], permet de comprendre le transfert des représentations en échelle. Soit en effet π = L(m) ∈ Irr(G nd ), où m = ([a 1 , b 1 …”
unclassified