Cytisine binds with high affinity and specificity to neuronal nicotinic receptors but its physiological and behavioural effects are complex and differ from those of nicotine. The present study explores the behavioural aspects further by comparing the discriminative stimulus effects of cystisine with those of nicotine. Two groups of rats were trained to discriminate cytisine (2 mg/kg s.c.) or nicotine (0.2 mg/kg s.c.) from saline in a two-lever operant conditioning procedure with food reinforcers presented on a tandem VI FR schedule. A third group of rats was trained to discriminate cytisine (3 mg/kg s.c.). Rats acquired these discriminations within 50 training sessions. The stimulus effects of both cytisine and nicotine appeared within 4 min of s.c. injection. In generalization tests, rats trained with either cytisine or nicotine showed steep dose-response curves (generalization gradients) for their respective training drug. However, rats trained with cytisine showed full dose-related, generalization to nicotine (93%), whereas rats trained with nicotine exhibited only partial generalization to cytisine (54%). Rats trained with either cytisine or nicotine exhibited similar, partial generalization (76-77%) to (+)-amphetamine. The nicotine antagonist mecamylamine blocked the discriminative stimulus effects of both cytisine and nicotine; it was confirmed that the block of nicotine (0.2 mg/kg) was complete, whereas the block of cytisine (2 and 3 mg/kg) was incomplete in two separate experiments. Overall, the results showed that cytisine, like nicotine, can serve as a robust discriminative stimulus but, in contrast to its relatively high affinity in binding experiments, cytisine was much less potent than nicotine in the behavioural studies. Although the stimulus effects of the two drugs were very similar, there were some subtle differences such as the asymmetrical cross-generalizations between them and possible small differences in susceptibility to antagonism by mecamylamine. These effects were interpreted either in terms of a putative partial agonist effect of cytisine, or by assuming that nicotine produces a compound stimulus. Such a stimulus would be mediated through two or more subtypes of nicotinic receptor, and cytisine would act at some, but not all, of these receptor subtypes.