The exosporium ofBacillus megateriumQM B1551 spores is morphologically distinct from exosporia observed for the spores of many other species. Previous work has demonstrated that unidentified genes carried on one of the large indigenous plasmids are required for the assembly of theBacillus megateriumexosporium. Here, we provide evidence that pBM600-encoded orthologues of theBacillus subtilisCotW and CotX proteins, which form the crust layer in spores of that species, are structural components of theBacillus megateriumQM B1551 spore exosporium. The introduction of plasmid-bornecotWand orthologouscotXgenes to the PV361 strain, which lacks all indigenous plasmids and produces spores that are devoid of an exosporium, results in the development of spores with a rudimentary exosporium-type structure. Additionally, purified recombinant CotW protein is shown to assemble at the air-water interface to form thin sheets of material, which is consistent with the idea that this protein may form a basal layer in theBacillus megateriumQM B1551 exosporium.IMPORTANCEWhen starved of nutrients, some bacterial species develop metabolically dormant spores that can persist in a viable state in the environment for several years. The outermost layers of spores are of particular interest since (i) these represent the primary site for interaction with the environment and (ii) the protein constituents may have biotechnological applications. The outermost layer, or exosporium, inBacillus megateriumQM B1551 spores is of interest, as it is morphologically distinct from the exosporia of spores of the pathogenicBacillus cereusfamily. In this work, we provide evidence that structurally important protein constituents of theBacillus megateriumexosporium are different from those in theBacillus cereusfamily. We also show that one of these proteins, when purified, can assemble to form sheets of exosporium-like material. This is significant, as it indicates that spore-forming bacteria employ different proteins and mechanisms of assembly to construct their external layers.