Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interactionbased neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2-interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence-specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death.
IntroductionThe BCL-2 family interaction network lies at the crossroads of the cell's life-death decision (1, 2). Among the oncogenic signals that drive the development and maintenance of cancer, the pathologic reprogramming of the BCL-2 family interaction network has emerged as a formidable barrier to modern day anticancer treatment. Antiapoptotic members of the BCL-2 family contain a surface hydrophobic groove that can bind, sequester, and neutralize the critical BH3 death domains of proapoptotic members (3). Small molecules, such as ABT-737 and ABT-263, that selectively inhibit the antiapoptotic proteins BCL-2 and BCL-X L induce apoptosis of tumors that are especially dependent upon this subset of survival proteins (4, 5). However, the compounds are rendered ineffective by cellular expression of alternate antiapoptotic proteins, such as MCL-1 and BFL1/A1, which lie outside the molecules' range of binding specificity or by the relative or absolute absence of proapoptotic effectors, such as BAX and BAK (6, 7). Thus, a pharmacologic quest is underway to develop nextgeneration agents that simulate broader spectrum BH3-dependent killing activities and effectively deactivate the deflector shields of relapsed and refractory cancers.Chief among the killer BH3-only proteins, Bcl-2-interacting mediator of cell death (BIM) exhibits the most broad-ranging BCL-2 protein interactions, engaging all of the antiapoptotic proteins with high affinity (8, 9) and also directly triggering death effectors, such as BAX (10,11). A recent genetic analysis elegantly demonstrated that only BIM BH3, but not oth...