The chaotic vibrations of a bimetallic shallow shell of revolution under time-varying temperature excitation are investigated in the present study. The governing equations are established in forms similar to those of classical single-layered shell theory by re-determination of reference surface. The nonlinear differential equation in time-mode is derived by variational method following an assumed spatial-mode. The Melnikov function is established theoretically to estimate regions of the chaos, and the Poincaré map, phase portrait, Lyapunov exponent, and Lyapunov dimension are used to determine if a chaotic motion really appears. Further investigations are developed by means of detailed numerical simulation, and both the bifurcation diagrams and corresponding maximum Lyapunov exponent are illustrated. The influence of static and time-dependent temperature parameters, height parameter of the shell, and damping parameter on the dynamic characteristics is examined. Interesting phenomena such as the onset of chaos, transient chaotic motion, chaos with interior crisis and period window, period-doubling scenario and reversed period-doubling bifurcation leading to chaos, jump phenomena, and chaos suddenly converting to period orbit have been observed from these figures.