The phenomenon of endotoxin tolerance has been widely investigated, but to date, the molecular mechanisms of endotoxin tolerance remain to be resolved clearly. The discovery of the Toll-like receptor (TLR) family as the major receptors for lipopolysaccharide (LPS) and other bacterial products has prompted a resurgence of interest in endotoxin tolerance mechanisms. Changes of cell surface molecules, signaling proteins, pro-inflammatory and anti-inflammatory cytokines and other mediators have been examined. During tolerance expression of LPS-binding protein (LBP), CD14, myeloid differentiation protein-2 (MD-2) and TLR2 are unchanged or up-regulated, whereas TLR4 is transiently suppressed or unchanged. Proximal post-receptor signaling proteins that are altered in tolerance include augmented degradation of interleukin-1 receptor-associated kinase (IRAK), and decreased TLR4-myeloid differentiation factor 88 (MyD88) and IRAK-MyD88 association. Tolerance has also been shown to be associated with decreased G i protein content and activity, decreased protein kinase C (PKC) activity, reduction in mitogen-activated protein kinase (MAP kinase) activity, and reduced activator protein-1 (AP-1) and nuclear factor kappa B (NF-kB) induced gene transactivation. However, not all signaling proteins and pathways are suppressed in tolerance and induction of specific anti-inflammatory proteins and signaling pathways may serve important counter inflammatory functions. The latter include induction of IRAK-M and suppressor of cytokine-signaling-1 (SOCS-1), phosphoinositide-3-kinase (PI3K) signaling, and increased or maintained expression of inhibitor-kB (IkB) isoforms. Also at the nuclear level, increase in the NF-kB subunit p50 homodimer expression and increased activation of peroxisome-proliferatoractivated receptors-g (PPARg) have been linked to tolerance phenotype. Although there are species and cellular variations in manifestation of the LPS tolerant phenotype, it is clear that the tolerance phenomena have evolved as a complex orchestrated counter regulatory response to inflammation.