Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS)is an important analytical tool in the systematic toxicological analysis performed in forensic toxicology. However, some important compounds, such as the antiepileptic drug valproate (valproic acid; VPA), cannot be directly detected with positive electrospray ionization (ESI + ) due to poor ionization. Here we demonstrate an omics-based retrospective analysis for the identification of indirect screening targets for VPA in whole blood with LC-ESI + -HRMS. Analysis was performed utilizing data acquired across four years from LC-ESI + -HRMS, with VPA results from a quantitative LC-MS/MS method. The combined data with VPA results were split into an exploration set (n = 68; 28% positive) and a test set (n = 37; 32% positive). Eight indirect targets for VPA were identified in the exploration set. The evaluation of these targets was confirmed with retrospective target analysis of the test set. Using a combination of two out of the eight indirect targets, we attained a sensitivity of 92% (n = 12; VPA concentration range: 4.4-29.7 mg/kg) and 100% specificity (n = 25) for VPA with LC-ESI + -HRMS. VPA screening targets were identified with retrospective data analysis and could be appended to the existing screening procedure. A sensitive and specific screening with LC-ESI + -HRMS was achieved with targets corresponding to the sodium adducts of C 7 H 14 O 3 and C 8 H 14 O 3 . Three chromatographic resolved isomer peaks were observed for the latter, and the consistently most intense peak was tentatively identified as 3-hydroxy-4-en-VPA. KEYWORDS biomarker, forensic toxicology screening, indirect screening, retrospective analysis, untargeted high-resolution mass spectrometry screening