Previous studies have shown that ATP enhances intracellular calcium concentration and activates potassium channels in Madin Darby canine kidney (MDCK)-cells, thus leading to hyperpolarization of the cell membrane. The present study has been performed to elucidate the intracellular mechanisms involved. To this end, the effects of ATP on the potential difference across the cell membrane (PD), on formation of inositol phosphates, and on intracellular calcium concentration (Cai) have been analyzed in cells without or with pretreatment with pertussis toxin or 12-O-tetradecanoyl phorbol 13-acetate diester (TPA). In untreated cells, ATP leads to a sustained hyperpolarization and an increase of inositol 1,4,5-trisphosphate (IP3), inositol 1,3,4,5-tetrakisphosphate (IP4), and Cai. In the absence of extracellular calcium, the effect of ATP on PD and Cai is only transient. In cells pretreated with pertussis toxin, the effect of ATP on inositol trisphosphate is almost abolished, but ATP still leads to an increase of PD and Cai, which is sustained in the presence, and transient in the absence, of extracellular calcium. In cells pretreated with TPA, the effect of ATP on inositol trisphosphate is reduced and the effect on Cai blunted; but ATP still leads to a hyperpolarization of the cell membrane, which is sustained in the presence, and transient in the absence, of extracellular calcium. The observations indicate that ATP activates phospholipase C by a phorbol ester and pertussis toxin sensitive mechanism. In addition, ATP enhances Cai by pertussis toxin insensitive mechanisms allowing recruitment of calcium from both, extracellular fluid and intracellular stores. Calcium then activates the potassium channels and thus leads to the hyperpolarization of the cell membrane.