Quantum frequency conversion, the process of shifting the frequency of an optical quantum state while preserving quantum coherence, can be used to produce non-classical light at otherwise unapproachable wavelengths. We present experimental results based on highly efficient sum-frequency generation (SFG) between a vacuum squeezed state at 1064 nm and a tunable pump source at 850 nm ± 50 nm for the generation of bright squeezed light at 472 nm ± 4 nm. We demonstrate that the SFG process conserves part of the quantum coherence as a 4.2(±0.2) dB 1064 nm vacuum squeezed state is converted to a 1.6(±0.2) dB tunable bright blue squeezed state.