Hurricane Harvey was one of the most extreme weather events to occur in Texas, USA; there was a huge amount of urban flooding in the city of Houston and the adjoining coastal areas. In this study, we reanalyze the spatiotemporal evolution of inundation during Hurricane Harvey using high-resolution two-dimensional urban flood modeling. This study’s domain includes the bayou basins in and around the Houston metropolitan area. The flood model uses the dynamic wave method and terrain data of 10-m resolution. It is forced by radar-based quantitative precipitation estimates. To evaluate the simulated inundation, on-site photos and water level observations were used. The inundation extent and severity are estimated by combining the retrieved water depths, images collected from the impacted area, and high-resolution terrain data. The simulated maximum inundation extent, which is frequently found outside of the designated flood zones, points out the importance of capturing multi-scale hydrodynamics in the built environment under extreme rainfall for effective flood risk and emergency management.