In this work, LiFePO4/C composite were synthesized via a green route by using Iron (III) oxide (Fe2O3) nanoparticles, Lithium carbonate (Li2CO3), glucose powder and phosphoric acid (H3PO4) solution as raw materials. The reaction principles for the synthesis of LiFePO4/C composite were analyzed, suggesting that almost no wastewater and air polluted gases are discharged into the environment. The morphological, structural and compositional properties of the LiFePO4/C composite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Raman and X-ray photoelectron spectroscopy (XPS) spectra coupled with thermogravimetry/Differential scanning calorimetry (TG/DSC) thermal analysis in detail. Lithium-ion batteries using such LiFePO4/C composite as cathode materials, where the loading level is 2.2 mg/cm2, exhibited excellent electrochemical performances, with a discharge capability of 161 mA h/g at 0.1 C, 119 mA h/g at 10 C and 93 mA h/g at 20 C, and a cycling stability with 98.0% capacity retention at 1 C after 100 cycles and 95.1% at 5 C after 200 cycles. These results provide a valuable approach to reduce the manufacturing costs of LiFePO4/C cathode materials due to the reduced process for the polluted exhaust purification and wastewater treatment.