2020
DOI: 10.1186/s13007-020-0555-0
|View full text |Cite
|
Sign up to set email alerts
|

Can-Seq: a PCR and DNA sequencing strategy for identifying new alleles of known and candidate genes

Abstract: Background: Forward genetic screens are a powerful approach for identifying the genes contributing to a trait of interest. However, mutants arising in genes already known can obscure the identification of new genes contributing to the trait. Here, we describe a strategy called Candidate gene-Sequencing (Can-Seq) for rapidly identifying and filtering out mutants carrying new alleles of known and candidate genes. Results: We carried out a forward genetic screen and identified 40 independent Arabidopsis mutants w… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 24 publications
0
1
0
Order By: Relevance
“…This is evident in the extensive gene duplication events that have occurred during the evolution of genes that encode core gene silencing machinery proteins and the sometimes overlapping but often distinct functionality of members of these gene families, as detailed below. For example, the model plant Arabidopsis encodes four DCLs, ten AGOs, and six RDRs, as well as an extensive suite of other related proteins that together aid in the specification of each RNA silencing pathway [33]. Moreover, sometimes the overlapping functions of members of gene families allow cross-talk to occur between interdependent sRNA pathways that are otherwise involved primarily in mediated silencing mechanisms at either the transcriptional or posttranscriptional level.…”
Section: Plant Gene Silencing Pathwaysmentioning
confidence: 99%
“…This is evident in the extensive gene duplication events that have occurred during the evolution of genes that encode core gene silencing machinery proteins and the sometimes overlapping but often distinct functionality of members of these gene families, as detailed below. For example, the model plant Arabidopsis encodes four DCLs, ten AGOs, and six RDRs, as well as an extensive suite of other related proteins that together aid in the specification of each RNA silencing pathway [33]. Moreover, sometimes the overlapping functions of members of gene families allow cross-talk to occur between interdependent sRNA pathways that are otherwise involved primarily in mediated silencing mechanisms at either the transcriptional or posttranscriptional level.…”
Section: Plant Gene Silencing Pathwaysmentioning
confidence: 99%