2018
DOI: 10.1051/e3sconf/20184002012
|View full text |Cite
|
Sign up to set email alerts
|

Calibration of a numerical model for the transport of floating wooden debris

Abstract: The paper describes the calibration of a numerical model to simulate the 2D motion of floating rigid bodies. The proposed model follows a one-way coupling Eulerian-Lagrangian approach, in which the solution of the Shallow Water Equations (SWE) is combined with the Discrete Element Method (DEM) to compute the displacement of rigid bodies. Floating bodies motion is computed by adapting the Maxey-Riley equation to the case of semi-submerged bodies at high Reynolds number. In order to account for the flow velocity… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?