2020
DOI: 10.3390/cryst10040329
|View full text |Cite
|
Sign up to set email alerts
|

Calculation of Surface Properties of Cubic and Hexagonal Crystals through Molecular Statics Simulations

Abstract: Surface property is an important factor that is widely considered in crystal growth and design. It is also found to play a critical role in changing the constitutive law seen in the classical elasticity theory for nanomaterials. Through molecular static simulations, this work presents the calculation of surface properties (surface energy density, surface stress and surface stiffness) of some typical cubic and hexagonal crystals: face-centered-cubic (FCC) pure metals (Cu, Ni, Pd and Ag), body-centered-cubic (BC… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
0
0
3

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(4 citation statements)
references
References 49 publications
0
0
0
3
Order By: Relevance
“…This indicates that, as the pulse width increases, the orientation of other oriented crystal planes, such as the (200) and (220) crystal planes, increases. For face-centered cubic lattices, the (111) crystal plane is the most stable because it has the lowest surface energy (γ(111) < γ(100) < γ(110)) [34,35]. This is clearly the result of the interaction between surface energy and strain energy.…”
Section: Microstructure and Analysismentioning
confidence: 99%
“…This indicates that, as the pulse width increases, the orientation of other oriented crystal planes, such as the (200) and (220) crystal planes, increases. For face-centered cubic lattices, the (111) crystal plane is the most stable because it has the lowest surface energy (γ(111) < γ(100) < γ(110)) [34,35]. This is clearly the result of the interaction between surface energy and strain energy.…”
Section: Microstructure and Analysismentioning
confidence: 99%
“…При этом экспериментальные значения для σ и σ ′ (T ) P оценивались, как правило, при T ≫ , а теоретические значения для σ -при T = 0 K. Как В работах [4,6,7,[56][57] точность экспериментального определения величины σ (100) для металлов оценивают в пределах ±(100−200) • 10 −3 J/m 2 . Численные методы расчета σ (100), согласно [6,8,10,[12][13][14]60], имеют точность ±(180−640) • 10 −3 J/m 2 . В связи с этим, определить значение σ ′ (T ) P , которое по величине порядка 10 −(4−5) J/(m 2 • K), экспериментально, либо путем численного моделирования очень проблематично.…”
Section: результаты расчета поверхностных свойств макрокристаллаunclassified
“…Поэтому прогнозированию значения σ уделяется большое внимание. На сегодняшний день предложено несколько методов расчета величины σ для кристалла простого (однокомпонентного) вещества (см., например, [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15]). Но большинство из этих методов (например, [1,2,5,6,8,9,13,14]) работоспособны только при нулевой температуре (T = 0 K) и нулевом давлении (P = 0).…”
Section: Introductionunclassified
See 1 more Smart Citation