SUMMARYThe development of a calculation method to solve the compressible, three-dimensional, turbulent boundary layer equations is described. An implicit finite difference solution procedure is adopted involving local upwinding of convective transport terms. A consistent approach to discretization and linearization is taken by casting all equations in a similar form. The implementation of algebraic, one-equation and two-equation turbulence models is described. An initial validation of the method is made by comparing prediction with measurements in two quasi-three-dimensional boundary layer flows. Some of the more obvious deficiencies in current turbulence-modelling standards for three-dimensional flows are discussed.