2011
DOI: 10.1016/j.jnoncrysol.2010.12.066
|View full text |Cite
|
Sign up to set email alerts
|

Broadband near-infrared emission from Bi–Er–Tm Co-doped germanate glasses

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
4
0
1

Year Published

2012
2012
2020
2020

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 18 publications
(5 citation statements)
references
References 19 publications
0
4
0
1
Order By: Relevance
“…The achieved smaller Ω 4 and larger Ω 6 values are established to be favourable for lasing transition. Branching ratio as much as 90% for4 F 9/2 → 4 I 15/2 and 2 H 11/2 → 4 I 15/2 transitions are achieved. A large enhancement in PL emissions of Er 3+ :Ag 0 coupled zinc boro-tellurite glass is measured (0.45-4.10 times) and contributed to large electric field induced in vicinity of non-spherical NPs captured by TEM imaging.…”
mentioning
confidence: 94%
See 1 more Smart Citation
“…The achieved smaller Ω 4 and larger Ω 6 values are established to be favourable for lasing transition. Branching ratio as much as 90% for4 F 9/2 → 4 I 15/2 and 2 H 11/2 → 4 I 15/2 transitions are achieved. A large enhancement in PL emissions of Er 3+ :Ag 0 coupled zinc boro-tellurite glass is measured (0.45-4.10 times) and contributed to large electric field induced in vicinity of non-spherical NPs captured by TEM imaging.…”
mentioning
confidence: 94%
“…In addition, the possession of high refractive index, low phonon energy, and wide transparency window of tellurite glasses offers them as attractive host [1,2]. Alternatively, RE ions doped glasses are found to be a suitable lasing media in visible-mid-infrared range [3][4][5]. Amongst all the RE ions, Er 3+ is gifted as an ideal luminescent centre for visible-mid-infrared emission possessing several efficient transitions including 2 H 11/2 → 4 I 15/2 , 4 S 3/2 → 4 I 15/2 , 4 F 9/2 → 4 I 15/2 , 4 S 3/2 → 4 I 13/2 and 4 I 11/2 → 4 I 13/2 [6].…”
Section: Introductionmentioning
confidence: 99%
“…2001 年 Fujimoto 等 [14] 首次采用 800 nm 的光激 发铋离子掺杂的铝硅酸盐玻璃产生了发光中心波长 为 1250 nm, 荧光半高宽为 300 nm, 荧光寿命为 630 μs 近红外发光, 发光波长范围几乎覆盖了石英光纤的 所有低损耗窗口。利用这一发光特性可以将铋离子 掺杂的铝硅酸盐玻璃制备成超宽带光纤放大器, 有 效地弥补现有光纤放大器的不足, 给光纤通信系统 带来新的契机, 引起了广泛关注。 铋离子在玻璃中的近红外发光光谱与稀土离子 Tm 3+ 、Er 3+ (图 1)进行对比可以发现 [15] , 铋离子的近 红外发光波长范围比 Tm 3+ 、Er 3+ 两种稀土离子的发 光范围大很多。另外, 相比于其他具有宽带近红外 发光的离子如 Cr 4+ 和 Ni 2+ , 铋离子拥有更好的基质 相容性 [16] ; 且铋离子的近红外发光特性不像 Ni 2+ 一 样存在激发态吸收现象 [17] , 制备工艺也不像制备 Cr 4+ 掺杂的玻璃一样对熔融制备工艺有严格的要求 [18] 。目 前对于掺铋玻璃的研究还存在很多问题, 主要的问 题有两个: 一是现有方法制备的掺铋玻璃发光效率 还未达到实际应用的水平; 二是掺铋玻璃的近红外 发光机理还不明确 [19] [20] , 所以探索新型的制备工艺以及 玻璃基质对于掺铋玻璃的发光性能的提高和发光机 理的研究都具有十分重要的意义。 图 1 常温下铋离子和 Tm 3+ , Er 3+ 离子在玻璃中的荧光光谱 [15] Fig. 1 Emission spectra of Bismuth doped silica glass and Tm 3+ , Er 3+ doped glasses [15] 1.2 量子点发光玻璃 量子点是一种准零维半导体纳米晶体, 由于量 子尺寸效应和量子限域效应的影响, 使其具有不同 于传统有机荧光染料的性能, 如: 化学稳定性高, 荧光强度好, 抗漂白能力强等 [21] 。由于量子点优异 的光电学特性, 越来越多的研究者将其作为发光组 分制备发光玻璃。量子点发光玻璃中的量子点主要 由 II-IV 族元素(如 PbSe、ZnS 等)、III-V 族元素(如 InP, InAs 等) [22][23] 以及两者的核壳结构组成, 而研究 比较多的主要是 CdX(X=S, Se, Te)和 Mn 掺杂 II-VI 族半导体纳米粒子以及 Ag + 、Cu 2+ 、Co 2+ 和稀土离 子掺杂的复合型量子点 [24] 。 Han 等 [25] 利用高温熔融和热处理法制备了 PbS 量子点玻璃, 其光谱范围在 1008~2182 nm 间。未热 处理时量子点玻璃为本征发光, 热处理后量子点因 奥斯特熟化定律颗粒长大, 发光谱峰发生红移。 Mishra 等 [26] 通过溶胶-凝胶法制备得到掺杂 CdS 量 子点的硅基玻璃薄膜, 在 485 nm 和 530 nm 处分别发 现了带隙发光和微弱的表面缺陷发光, 且随着老化 时间增加, 表面缺陷态发光强度逐渐增强(如图 2)。 Han 等 [27] 利用熔融-冷却法制备得到 CdS 和 CdSe 量子点玻璃, 并将其与 455 nm 激发波长的蓝 光 LED 芯片结合, 得到 LED 器件(如图 3)。但是该 LED 器件发光效率较低, 主要是因为 CdSe 量子点 表面缺乏适当的钝化层, 使得电子与表面缺陷快速 无辐射复合形成激子对, 造成发光效率的降低。 Sohn 等 [28] 在 CuInS 2 量子点表面覆盖了 ZnS 壳层制 备了核壳结构的量子点, 与荧光粉玻璃进行结合得 到了色坐标位于(0.363, 0.324), 显色指数高达 91 的 白光 LED 器件。他们还比较 LED 工作 3 h 后的发 图 2 掺杂 CdS 纳米颗粒的介孔二氧化硅玻璃层随老化时间 变化的荧光谱图 [26] Fig. 2 Photoluminescence (PL) spectral evolution of CdS NPs incorporated mesoporous SiO 2 film with respect to ageing time as indicated in the figure in ambient condition [26] 图 3 (a)不同热处理时间的掺杂 CdSe 量子点玻璃 LEDs 的色 谱图, LEDs 发光照片位于右侧; (b)和(c)为 LED 的电致发光与 光致发光谱图 [27] Fig.…”
Section: 铋离子发光玻璃unclassified
“…In recent years, a few reports have investigated the ultra-broadband NIR emission, including all the O (1260-1360 nm), E (1360-1460 nm), S(1460-1530 nm), C (1530-1565 nm), L (1565-1625 nm) and U (1625-1675 nm) bands in the RE ions [12][13][14][15], but efficient enhanced broadband NIR still has not significantly improved. In another aspect, a lot of work has been reported on the NIR luminescent properties of Er 3+ -Nd 3+ co-doped in a variety of glass matrices which include chalcohalide glasses [16], tellurite glasses [17,18], and germanate glasses [19].…”
Section: Introductionmentioning
confidence: 99%