“…Due to the importance of rapid, automatic, and non-contact detection of explosives for homeland security and environmental safety [8], a variety of spectroscopic technologies have been employed to detect trace quantities of explosives; for example, terahertz (THz) spectroscopy [9,10], laser induced breakdown spectroscopy (LIBS) [11,12,13,14,15,16], Raman spectroscopy [17,18,19,20,21,22], ion mobility spectrometry (IMS) [23,24,25,26], nuclear magnetic resonance (NMR) [27,28,29,30], nuclear quadrupole resonance (NQR) [31,32,33], laser-induced thermal emissions (LITE) [34,35], infrared (IR) spectroscopy [36,37,38], mass spectrometry [39,40,41,42,43,44,45,46], optical emission spectroscopy (OES) [47,48], photo-thermal infrared imaging spectroscopy (PT-IRIS) [49,50,51], photoacoustic techniques [52,53,54], FT-FIR spectroscopy [55], microwave [56], and millimeter-wave [57], etc. Various electromagnetic radiations such as X-ray [58] and γ rays [59] have also been employed in explosive detection.…”