2022
DOI: 10.21203/rs.3.rs-1189770/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Bringing to Life a Newly Discovered Signature of Fatigue Crack Initiation via Multimodal Characterizations

Abstract: Fatigue is the most prevalent failure mode in structural materials, yet remains challenging to study due to the seemingly unpredictable nature of crack initiation. To elucidate the driving forces of crack initiation in ductile polycrystalline metals, we employ a multimodal approach to identify and track grains with a suspected potential to initiate fatigue cracks via a newly founded signature. We discover this crack initiation potential (CIP) signature under the hypothesis that slip localization, a well-known … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 29 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?