2017
DOI: 10.1186/s11671-017-2153-2
|View full text |Cite
|
Sign up to set email alerts
|

Bright Single-Photon Source at 1.3 μm Based on InAs Bilayer Quantum Dot in Micropillar

Abstract: A pronounced high count rate of single-photon emission at the wavelength of 1.3 μm that is capable of fiber-based quantum communication from InAs/GaAs bilayer quantum dots coupled with a micropillar (diameter ~3 μm) cavity of distributed Bragg reflectors was investigated, whose photon extraction efficiency has achieved 3.3%. Cavity mode and Purcell enhancement have been observed clearly in microphotoluminescence spectra. At the detection end of Hanbury-Brown and Twiss setup, the two avalanched single-photon co… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
13
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
7
2
1

Relationship

0
10

Authors

Journals

citations
Cited by 34 publications
(15 citation statements)
references
References 27 publications
0
13
0
2
Order By: Relevance
“…Among all the ways to realize quantum light sources such as atomic systems [5], parametric down-conversion [6], or vacancy centers in diamond [7,8], semiconductor InAs/GaAs quantum dots (QDs) are promising candidates to realize practical monolithic quantum light sources for quantum communication and other applications such as quantum-enhanced sensing [9] or quantum imaging [10]. The advantages of InAs/GaAs QDs include extremely narrow linewidth [4], stable and on-demand emission with high single photon emission rate (can be enhanced by the cavity coupling) [11], easy to tune through physical multi-fields [12][13][14], *Correspondence: nihq@semi.ac.cn 1 State Key Laboratory for Superlattice and Microstructures, Institute of Semiconductors,Chinese Academy of Sciences, 100083 Beijing, China 2 Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences, 100049 Beijing, China Full list of author information is available at the end of the article more suitable for fiber-array coupling output [15], and the wavelength is tunable (840∼1300 nm at present) for potential telecom quantum information application [16]. Despite its advantages, the key issue to realize a practical QD single-photon source is how to further improve the brightness (i.e., count rates) of single photon source, which will greatly improve the efficiency of quantum information transmission [4].…”
Section: Introductionmentioning
confidence: 99%
“…Among all the ways to realize quantum light sources such as atomic systems [5], parametric down-conversion [6], or vacancy centers in diamond [7,8], semiconductor InAs/GaAs quantum dots (QDs) are promising candidates to realize practical monolithic quantum light sources for quantum communication and other applications such as quantum-enhanced sensing [9] or quantum imaging [10]. The advantages of InAs/GaAs QDs include extremely narrow linewidth [4], stable and on-demand emission with high single photon emission rate (can be enhanced by the cavity coupling) [11], easy to tune through physical multi-fields [12][13][14], *Correspondence: nihq@semi.ac.cn 1 State Key Laboratory for Superlattice and Microstructures, Institute of Semiconductors,Chinese Academy of Sciences, 100083 Beijing, China 2 Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences, 100049 Beijing, China Full list of author information is available at the end of the article more suitable for fiber-array coupling output [15], and the wavelength is tunable (840∼1300 nm at present) for potential telecom quantum information application [16]. Despite its advantages, the key issue to realize a practical QD single-photon source is how to further improve the brightness (i.e., count rates) of single photon source, which will greatly improve the efficiency of quantum information transmission [4].…”
Section: Introductionmentioning
confidence: 99%
“…In the last two decades, composite materials containing semiconductor nanostructures have found great use in photonic applications due to light sensitivity, ease and low cost of fabrication, spectral tunability, and highly efficient emission with short lifetime [ 1 5 ]. In(Ga)As quantum dot (QD) heterostructures is an important class of infrared-sensitive nanostructures, which has been widely employed in various photonic devices, such as lasers [ 2 , 6 ], single-photon sources [ 7 , 8 ], photodetectors [ 9 13 ], and solar cells [ 14 16 ]. Numerous investigations have been devoted to improve the photoelectric properties of such light-sensitive devices.…”
Section: Introductionmentioning
confidence: 99%
“…При использовании КТ InAs/GaAs спектрального диапазона 900 nm для ИОФ на основе вертикального оптического микрорезонатора была продемонстрирована общая PEE ∼ 74% при оптической накачке [5] и общая PEE ∼ 61% при инжекционной накачке [6]. В то же время экспериментально измеренная эффективность вывода фотонов для ИОФ телекоммуникационного диапазона остается довольно низкой: ∼ 3.3% в апертурном угле NA = 0.45 для ИОФ на основе вертикального оптического микрорезонатора с КТ InAs/InGaAs/GaAs [7], ∼ 10% в апертурном угле NA = 0.4 для ИОФ на основе вертикального оптического микрорезонатора с монолитной микролинзой и КТ InGaAs/InGaAs/GaAs [8] и ∼ 36% в апертурном угле NA = 0.7 для ИОФ на основе фотонного кристалла оптического микрорезонатора с КТ InAs/InP [9]. Сравнительно недавно была предложена гибридная конструкция ИОФ спектрального диапазона 1.3 µm на основе радиальной брэгговской решетки с эффективностью вывода PEE в апертурном угле NA = 0.8 более 95% [10], однако реализация излучателей с инжекционной накачкой в такой геометрии представляется проблематичной.…”
Section: поступило в редакцию 14 ноября 2020 г в окончательной редакunclassified