2016
DOI: 10.1016/j.eswa.2016.05.033
|View full text |Cite
|
Sign up to set email alerts
|

Bridging the divide in financial market forecasting: machine learners vs. financial economists

Abstract: Abstract-Financial time series forecasting is a popular application of machine learning methods. Previous studies report that advanced forecasting methods predict price changes in financial markets with high accuracy and that profit can be made trading on these predictions.However, financial economists point to the informational efficiency of financial markets, which questions price predictability and opportunities for profitable trading. The objective of the paper is to resolve this contradiction. To this end… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
58
0
4

Year Published

2017
2017
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 143 publications
(74 citation statements)
references
References 80 publications
0
58
0
4
Order By: Relevance
“…Neural networks have been a popular instrument for financial forecasting for decades and represent the backbone of modern modeling approaches in the scope of deep learning. With regard to their applications in finance, feedforward neural networks (FNN) have received much recognition and have been used by several studies to predict price movements (Hsu et al 2016). From a methodological point of view, RNNs are better suited to process sequential data (i.e., temporal financial data) than other network architectures.…”
Section: Related Workmentioning
confidence: 99%
“…Neural networks have been a popular instrument for financial forecasting for decades and represent the backbone of modern modeling approaches in the scope of deep learning. With regard to their applications in finance, feedforward neural networks (FNN) have received much recognition and have been used by several studies to predict price movements (Hsu et al 2016). From a methodological point of view, RNNs are better suited to process sequential data (i.e., temporal financial data) than other network architectures.…”
Section: Related Workmentioning
confidence: 99%
“…Nepaisant to, techniniai rodikliai plačiai naudojami įvairiose kompiuterinėse sistemose ir integruojami su kitais kintamaisiais, pavyzdžiui, kasdienės naujienos finansų rinkose ir pan. (Hsu et al 2016). 1 lentelėje galima matyti, kad analizuojami prognozavimo modeliai gali skirtis pagal savo rezultatą: prognozuojama kainos kitimo kryptis (kyla arba krinta), prognozuojamos tikslios akcijų kainos įvertina investavimo, atsižvelgiant į gautą prognozę, pelningumą.…”
Section: Prielaidos Investavimo Sprendimų Priėmimo Modeliams Kurtiunclassified
“…Deja, jie neįtraukia naujausių akcijų kainų, kitaip nei dinamiški modeliai, kurie įvertina skirtingos kilmės ir periodų laiko eilutes, ir naudoja naujausius mokymosi šablonus. Be to, statiški modeliai gali pervertinti akcijų kainas, o dinamiški modeliai mažina tokių klaidų tikimybę (Hsu et al 2016).…”
Section: Prielaidos Investavimo Sprendimų Priėmimo Modeliams Kurtiunclassified
See 2 more Smart Citations