2014
DOI: 10.1016/j.neuroimage.2014.09.031
|View full text |Cite
|
Sign up to set email alerts
|

Brainstem changes associated with increased muscle sympathetic drive in obstructive sleep apnoea

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

4
40
1
1

Year Published

2016
2016
2021
2021

Publication Types

Select...
8

Relationship

2
6

Authors

Journals

citations
Cited by 46 publications
(46 citation statements)
references
References 49 publications
4
40
1
1
Order By: Relevance
“…[11][12][13][14][15][16] This finding has been attributed to an elevation in the set point for efferent sympathetic outflow resulting from progressive carotid body hypersensitivity and altered structure and function of catecholaminergic neurons in brain stem and cortical regions involved in autonomic cardiovascular regulation. 10,[17][18][19][29][30][31][32] Johnson et al 33 have recently reviewed experimental literature demonstrating induction, by transient challenges, of long-lasting changes in synaptic function within a widely distributed network of brain regions engaged in the longterm regulation of blood pressure and the amplification of initial hemodynamic responses by subsequent rechallenge. These data indicate that short-term external stimuli can induce afferent neural and circulating hormonal changes that in turn facilitate molecular neuroplasticity in subcortical and preganglionic components of the sympathetic nervous system, resulting in an elevated prevailing set point for efferent sympathetic nerve firing and consequent norepinephrine release.…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…[11][12][13][14][15][16] This finding has been attributed to an elevation in the set point for efferent sympathetic outflow resulting from progressive carotid body hypersensitivity and altered structure and function of catecholaminergic neurons in brain stem and cortical regions involved in autonomic cardiovascular regulation. 10,[17][18][19][29][30][31][32] Johnson et al 33 have recently reviewed experimental literature demonstrating induction, by transient challenges, of long-lasting changes in synaptic function within a widely distributed network of brain regions engaged in the longterm regulation of blood pressure and the amplification of initial hemodynamic responses by subsequent rechallenge. These data indicate that short-term external stimuli can induce afferent neural and circulating hormonal changes that in turn facilitate molecular neuroplasticity in subcortical and preganglionic components of the sympathetic nervous system, resulting in an elevated prevailing set point for efferent sympathetic nerve firing and consequent norepinephrine release.…”
Section: Discussionmentioning
confidence: 99%
“…[11][12][13][14][15][16] Este hallazgo se ha atribuido a una elevación del punto de regulación del flujo simpá-tico eferente, que resulta de la hipersensibilidad progresiva del cuerpo carotídeo, y de la alteración de la estructura y función de las neuronas catecolaminérgicas del tronco cerebral y las regiones corticales involucradas en la regulación cardiovascular autónoma. 10,[17][18][19][29][30][31][32] Recientemente, Johnson et al revisaron la bibliografía experimental que demostraba inducción, mediante desafíos transitorios, de cambios duraderos de la función sináptica dentro de una red ampliamente distribuida de regiones encefálicas involucradas en la regulación a largo plazo de la presión arterial y la amplificación de las respuestas hemodinámicas iniciales por re-desafío ulterior. Estos datos indican que los estímulos externos a corto plazo pueden inducir cambios neurales aferentes y hormonales circulantes que, a su vez, facilitan la neuroplasticidad molecular de componentes subcorticales y preganglionares del sistema nervioso simpático, lo que determina un punto de regulación elevado prevalente para la descarga nerviosa simpática eferente y la consiguiente liberación de noradrenalina.…”
Section: Discussionunclassified
“…CBF is decreased in the right midbrain of OSA subjects (Yadav et al, 2013), which may reflect lower perfusion demand, perhaps from an altered functional state (for example, lower tonic activity), or impaired cerebral perfusion. Structural changes consistent with inflammatory or glial changes, namely diffusion decreases and volume increases, appear in the hypothalamus in OSA (Lundblad et al, 2014; Tummala et al, 2016), which projects heavily to the midbrain (Sakuma and Tada, 1984; Thompson and Swanson, 1998). The combined data suggest that the midbrain is compromised in OSA, potentially interfering with regulatory roles for cardiovascular and breathing control, as well as other physiological functions in the disorder.…”
Section: Introductionmentioning
confidence: 99%
“…Functional MRI studies show increased activation of the ventral and dorsal midbrain during inspiratory loading exercises (Macey et al, 2006, 2003) and decreased activity during cold pressor and expiratory loading challenges in OSA (Harper et al, 2003; Macey et al, 2003). Elevated muscle sympathetic nerve activity (MSNA) correlates with altered Blood Oxygen-Level-Dependent (BOLD) signals in the midbrain in OSA, suggesting a midbrain role in eliciting the high sympathetic tone in the sleep disorder (Fatouleh et al, 2014; Lundblad et al, 2014). CBF is decreased in the right midbrain of OSA subjects (Yadav et al, 2013), which may reflect lower perfusion demand, perhaps from an altered functional state (for example, lower tonic activity), or impaired cerebral perfusion.…”
Section: Introductionmentioning
confidence: 99%
“…We found that in OSA subjects, each sympathetic burst was associated with altered MSNA-coupled fMRI signal intensity in the region of the medullary raphe nucleus, rostral ventrolateral medulla and dorsolateral pons [14] (Fig. 2).…”
Section: Msna-related Functional Changes and Structural Changes In Brmentioning
confidence: 89%